Формула изменения внутренней энергии тела. Большая энциклопедия нефти и газа

💖 Нравится? Поделись с друзьями ссылкой

Cтраница 1


Внутренняя энергия вещества является энергией составляющих вещество молекул. В обычных термодинамических процессах изменения претерпевают лишь кинетическая и потенциальная части внутренней энергии. Первая зависит от скоростей движения молекул (поступательного, вращательного, колебательного), вторая обусловливается наличием сил взаимодействия (притяжения или отталкивания) между молекулами и расстоянием между ними.  

Внутренняя энергия вещества представляет собой его полную энергию, которая складывается из кинетической и потенциальной энергий, составляющих вещество атомов и молекул, а также элементарных частиц, образующих атомы и молекулы.  

Внутренняя энергия вещества зависит только от его физического состояния и не зависит от способа или пути, которыми данное вещество приведено в данное состояние. Это следует непосредственно из закона сохранения энергии. В самом деле, обозначим цифрами 1 и 2 два произвольных состояния системы. Пусть V есть затраченная на этот переход энергия. Заставим теперь систему совершить первый переход в прямом - направлении, второй - в обратном. При первом переходе будет затрачена энергия [ /, при втором отдана U, следовательно, внешние тела, окружающие систему, получают энергию U - V, причем никаких изменений в самой системе не происходит. U положительна или отрицательна, безразлично; во всяком случае наше рассуждение привело нас к противоречию с законом сохранения энергии.  

Внутренняя энергия вещества зависит при данных условиях не только от химической природы его, но и от агрегатного состояния, а для кристаллов - и от модификации их.  

Внутренняя энергия вещества представляет собой его полную энергию, которая суммируется из кинетической и потенциальной энергий, составляющих вещество атомов и молекул, а также элементарных частиц, образующих атомы и молекулы. Она включает: 1) энергию поступательного, вращательного и колебательного движения всех частиц; 2) потенциальную энергию взаимодействия (притяжения и отталкивания) между ними; 3) внутримолекулярную химическую энергию; 4) внутриатомную энергию; 5) внутриядерную энергию; 6) гравитационную энергию; 7) лучистую энергию, заполняющую пространство, занятое телом, и обеспечивающую внутри тела тепловое равновесие между отдельными его участками. Внутренняя энергия не включает потенциальную энергию, обусловленную положением системы в пространство, и кинетическую энергию движения системы как целого.  

Внутренняя энергия вещества превращается в энергию излучения.  

Внутренней энергией вещества называется сумма кинетических энергий всех молекул и потенциальных энергий взаимодействия между молекулами. Чем больше величина внутренней энергии, тем больше тепла содержится в теле и тем выше его температура.  

Увеличение внутренней энергии вещества при испарении без изменения температуры происходит в основном благодаря тому, что при переходе в пар среднее расстояние между молекулами увеличивается. При этом возрастает их потенциальная энергия, так как для того, чтобы раздвинуть молекулы на большие расстояния, нужно затратить работу на преодоление сил притяжения молекул друг к другу.  

Под внутренней энергией вещества понимают сумму кинетической энергии движения молекул, потенциальной энергии их взаимодействия, а также энергии колебания атомов внутри молекул. При определении состояния тела величина внутренней энергии строго определенна, поэтому ее также относят к параметрам состояния тела.  

При этом внутренняя энергия вещества превращается в энергию излучения (энергию фотонов или электромагнитных волн), которая, попадая на тела, способные ее поглощать, снова превращается во внутреннюю энергию. Например, при полете космического корабля в межпланетном пространстве его поверхность поглощает излучение Солнца.  

Так как внутренняя энергия веществ является функцией объема, давления и температуры, то, очевидно, и тепловые эффекты реакций зависят от условий, при которых эти реакции протекают. Практически наибольшее значение имеет влияние температуры на тепловые эффекты процессов.  

Показать, что внутренняя энергия вещества с уравнением состояния в форме pTf (V) не зависит от объема.  

Показать, что внутренняя энергия вещества с уравнением состояния в форме р / (F) Т не зависит от объема.  

Вследствие изменения при нагреве внутренней энергии вещества практически все физические свойства последнего в большей или меньшей степени зависят от температуры, но для ее измерения выбираются по возможности те из них, которые однозначно меняются с изменением температуры, не подвержены влиянию других факторов и сравнительно легко поддаются измерению. Этим требованиям наиболее полно соответствуют такие свойства рабочих веществ, как объемное расширение, изменение давления в замкнутом объеме, изменение электрического сопротивления, возникновение термоэлектродвижущей силы и интенсивность излучения, положенные в основу устройства приборов для измерения температуры.  

Их взаимодействия.

Внутренняя энергия входит в баланс энергетических превращений в природе. После открытия внутренней энергии был сформулирован закон сохранения и превращения энергии. Рассмотрим взаимное превращение механической и внутренней энергий. Пусть на свинцовой плите лежит свинцовый шар . Поднимем его вверх и отпустим. Когда мы подняли шар, то сообщили ему потен-циальную энергию. При падении шара она уменьшается, т. к. шар опускается все ниже и ниже. Но с увеличением скорости постепенно увеличивается кинетическая энергия шара. Происходит превращение потенциальной энергии шара в кинетическую. Но вот шар ударился о свинцовую плиту и остановился. И кинетическая, и потенциальная энергии его относительно плиты стали равными нулю. Рассматривая шар и плиту после удара, мы увидим, что их состояние изменилось: шар немного сплющился, и на плите образовалась небольшая вмятина; измерив же их температу-ру , мы обнаружим, что они нагрелись.

Нагрев означает увеличение средней кинетической энергии молекул тела. При деформации из-меняется взаимное расположение частиц тела, поэтому изменяется и их потенциальная энергия.

Таким образом, можно утверждать, что в результате удара шара о плиту происходит превращение механической энергии, которой обладал в начале опыта шар, во внутреннюю энергию тела.

Нетрудно наблюдать и обратный переход внутренней энергии в механическую.

Например, если взять толстостенный стеклянный сосуд и накачать в него воздух через отверстие в пробке, то спустя какое-то время пробка из сосуда вылетит. В этот момент в сосуде образуется туман. Появление тумана означает, что воздух в сосуде стал холоднее и, следовательно, его внут-ренняя энергия уменьшилась. Объясняется это тем, что находившийся в сосуде сжатый воздух, выталкивая пробку (т. е. расширяясь), совершил работу за счет уменьшения своей внутренней энергии. Кинетическая энергия пробки увеличилась за счет внутренней энергии сжатого воздуха.

Таким образом, одним из способов изменения внутренней энергии тела является работа, совершаемая молекулами тела (или другими телами) над данным телом. Способом изменения внут-ренней энергии без совершения работы является теплопередача .

Внутренняя энергия идеального одноатомного газа.

Поскольку молекулы идеального газа не взаимодействуют друг с другом, их потенциальная энергия считается равной нулю. Внутренняя энергия идеального газа определяется только кинетической энергией беспорядочного поступательного движения его молекул. Для ее вычисления нужно умножить среднюю кинетическую энергию одного атома на число атомов . Учитывая, что k N A = R , получим значение внутренней энергии идеального газа :

.

Внутренняя энергия идеального одноатомного газа прямо пропорциональна его температуре. Если воспользоваться уравнением Клапейрона-Менделеева , то выражение для внутренней энергии идеального газа можно представить в виде:

.

Следует отметить, что, согласно выражению для средней кинетической энергии одного атома и в силу хаотичности движения, на каждое из трех возможных направлений движения, или каждую степень свободы , по оси X , Y и Z приходится одинаковая энергия .

Число степеней свободы — это число возможных независимых направлений движения молекулы.

Газ, каждая молекула которого состоит из двух атомов, называется двухатомным. Каждый атом может двигаться по трем направлениям, поэтому общее число возможных направлений дви-жения — 6. За счет связи между молекулами число степеней свободы уменьшается на одну, по-этому число степеней свободы для двухатомной молекулы равно пяти .

Средняя кинетическая энергия двухатомной молекулы равна . Соответственно внутрен-няя энергия идеального двухатомного газа равна:

.

Формулы для внутренней энергии идеального газа можно обобщить:

.

где i — число степеней свободы молекул газа (i = 3 для одноатомного и i = 5 для двухатомного газа).

Для идеальных газов внутренняя энергия зависит только от одного макроскопического параметра — температуры и не зависит от объема, т. к. потенциальная энергия равна нулю (объем определяет среднее расстояние между молекулами).

Для реальных газов потенциальная энергия не равна нулю. Поэтому внутренняя энергия в тер-модинамике в общем случае однозначно определяется параметрами, характеризующими состоя-ние этих тел: объемом (V) и температурой (T) .

Рассмотрение того или иного физического явления или класса явлений удобно производить при помощи моделей разной степени приближения. Например, при описании поведения газа используется физическая модель - идеальный газ.

Любая модель имеет границы применимости, при выходе за которые требуется ее уточнение либо применение более сложных вариантов. Здесь мы рассмотрим простой случай описания внутренней энергии физической системы исходя из наиболее существенных свойств газов в определенных пределах.

Идеальный газ

Эта физическая модель для удобства описания некоторых основополагающих процессов следующим образом упрощает реальный газ:

  • Пренебрегает размерами молекул газа. Это означает, что существуют явления, для адекватного описания которых данный параметр несущественен.
  • Пренебрегает межмолекулярными взаимодействиями, то есть принимает, что в интересующих ее процессах они проявляются в ничтожно малые промежутки времени и не оказывают влияния на состояние системы. При этом взаимодействия носят характер абсолютно упругого удара, при котором не происходит энергопотерь на деформации.
  • Пренебрегает взаимодействием молекул со стенками резервуара.
  • Принимает, что система «газ - резервуар» характеризуется термодинамическим равновесием.

Такая модель подходит для описания реальных газов, если давления и температуры относительно невелики.

Энергетическое состояние физической системы

Всякая макроскопическая физическая система (тело, газ или жидкость в сосуде) обладает, помимо собственной кинетической и потенциальной, еще одним видом энергии - внутренней. Эту величину получают, суммируя энергии всех составляющих физическую систему подсистем - молекул.

Каждая молекула в составе газа тоже имеет свою потенциальную и кинетическую энергию. Последняя обусловлена непрерывным хаотическим тепловым движением молекул. Различные взаимодействия между ними (электрическое притяжение, отталкивание) определяются потенциальной энергией.

Нужно помнить, что если энергетическое состояние каких-либо частей физической системы не оказывает никакого влияния на макроскопическое состояние системы, то оно не принимается во внимание. Например, при обычных условиях ядерная энергия не проявляет себя в изменениях состояния физического объекта, поэтому ее учитывать не нужно. Но при больших температурах и давлениях это уже необходимо делать.

Таким образом, внутренняя энергия тела отражает характер движения и взаимодействия его частиц. Это означает, что данный термин является синонимом часто употребляемого понятия «тепловая энергия».

Одноатомные газы, то есть такие, атомы которых не объединены в молекулы, существуют в природе - это инертные газы. Такие газы, как кислород, азот или водород, могут существовать в подобном состоянии только в условиях, когда извне затрачивается энергия на постоянное возобновление этого состояния, поскольку их атомы химически активны и стремятся соединиться в молекулу.

Рассмотрим энергетическое состояние одноатомного идеального газа, помещенного в сосуд некоторого объема. Это простейший случай. Мы помним, что электромагнитное взаимодействие атомов между собой и со стенками сосуда, а, следовательно, и их потенциальная энергия пренебрежимо малы. Так что внутренняя энергия газа включает в себя только сумму кинетических энергий его атомов.

Ее можно вычислить, умножив среднюю кинетическую энергию атомов в газе на их количество. Средняя энергия равна E = 3/2 х R / N A х T, где R - универсальная газовая постоянная, N A - число Авогадро, Т - абсолютная температура газа. Число атомов подсчитываем, умножая количество вещества на постоянную Авогадро. Внутренняя энергия одноатомного газа будет равна U = N A х m / M х 3/2 х R/N A х T = 3/2 х m / M х RT. Здесь m - масса и М - молярная масса газа.

Предположим, что химический состав газа и его масса всегда остаются одинаковыми. В таком случае, как видно из полученной нами формулы, внутренняя энергия зависит только от температуры газа. Для реального газа нужно будет учитывать, помимо температуры, изменение объема, поскольку оно влияет на потенциальную энергию атомов.

Молекулярные газы

В приведенной выше формуле число 3 характеризует количество степеней свободы движения одноатомной частицы - оно определяется числом координат в пространстве: x, y, z. Для состояния одноатомного газа вообще безразлично, вращаются ли его атомы.

Молекулы же сферически асимметричны, поэтому при определении энергетического состояния молекулярных газов нужно учитывать кинетическую энергию их вращения. Двухатомные молекулы, кроме перечисленных степеней свободы, связанных с поступательным движением, имеют еще две, связанные с вращением вокруг двух взаимно перпендикулярных осей; у многоатомных молекул таких независимых осей вращения три. Следовательно, частицы двухатомных газов характеризуются количеством степеней свободы f=5, у многоатомных же молекул f=6.

Вследствие хаотичности, присущей тепловому движению, все направления и вращательного, и поступательного перемещения совершенно равновероятны. Средняя кинетическая энергия, вносимая каждым видом движения, одинакова. Поэтому мы можем подставить величину f в формулу, что позволяет рассчитать внутреннюю энергию идеального газа любого молекулярного состава: U = f / 2 х m / M х RT.

Конечно, мы видим из формулы, что эта величина зависит от количества вещества, то есть от того, сколько и какого газа мы взяли, а также от структуры молекул этого газа. Однако, поскольку мы условились не менять массу и химический состав, то учитывать нам нужно только температуру.

Теперь рассмотрим, как величина U связана с другими характеристиками газа - объемом, а также давлением.

Внутренняя энергия и термодинамическое состояние

Температура, как известно, является одним из состояния системы (в данном случае газа). В идеальном газе она связана с давлением и объемом соотношением PV = m / M х RT (так называемое уравнение Клапейрона - Менделеева). Температура же определяет тепловую энергию. Так что последнюю можно выразить через набор других параметров состояния. Она безразлична к предыдущему состоянию, а также к способу его изменения.

Посмотрим, как изменяется внутренняя энергия, когда система переходит из одного термодинамического состояния в другое. Ее изменение при любом подобном переходе определяется разностью начального и конечного значений. Если система через некоторое промежуточное состояние возвратилась к первоначальному, то эта разность будет равна нулю.

Допустим, мы нагрели газ в резервуаре (то есть подвели к нему дополнительную энергию). Термодинамическое состояние газа изменилось: возросли его температура и давление. Такой процесс идет без изменения объема. Внутренняя энергия нашего газа увеличилась. После этого наш газ отдал подведенную энергию, остыв до исходного состояния. Такой фактор, как, например, скорость этих процессов, не будет иметь никакого значения. Результирующее изменение внутренней энергии газа при любой скорости нагревания и охлаждения равняется нулю.

Важным моментом является то, что одному и тому же значению тепловой энергии может соответствовать не одно, а несколько термодинамических состояний.

Характер изменения тепловой энергии

Для того чтобы изменить энергию, требуется совершить работу. Работа может совершаться самим газом или внешней силой.

В первом случае затрата энергии на совершение работы производится за счет внутренней энергии газа. Например, мы имели в резервуаре с поршнем сжатый газ. Если отпустить поршень, расширяющийся газ станет поднимать его, совершая работу (чтобы она была полезной, пусть поршень поднимает какой-нибудь груз). Внутренняя энергия газа уменьшится на величину, затраченную на работу против силы тяжести и сил трения: U 2 = U 1 - A. В этом случае работа газа положительна, поскольку направление силы, приложенной к поршню, совпадает с направлением движения поршня.

Начнем опускать поршень, совершая работу против силы давления газа и опять-таки против сил трения. Тем самым мы сообщим газу некоторое количество энергии. Здесь уже считается положительной работа внешних сил.

Помимо механической работы, существует и такой способ отнять у газа или сообщить ему энергию, как Мы уже встречались с ним в примере с нагреванием газа. Энергия, переданная газу в ходе процессов теплообмена, называется количеством теплоты. Теплообмен бывает трех видов: теплопроводность, конвекция и лучистый перенос. Рассмотрим их немного подробнее.

Теплопроводность

Способность вещества к теплообмену, осуществляемому его частицами путем передачи друг другу кинетической энергии в ходе взаимных столкновений при тепловом движении - это теплопроводность. Если некоторая область вещества нагрета, то есть ей сообщено определенное количество теплоты, внутренняя энергия через некоторое время посредством столкновений атомов или молекул окажется распределена между всеми частицами в среднем однородно.

Понятно, что теплопроводность сильно зависит от частоты столкновений, а та, в свою очередь - от среднего расстояния между частицами. Поэтому газ, особенно идеальный, характеризуется весьма низкой теплопроводностью, и это свойство часто используют для теплоизоляции.

Из реальных газов теплопроводность выше у тех, чьи молекулы наиболее легкие и при этом многоатомные. Этому условию в наибольшей степени отвечает молекулярный водород, в наименьшей - радон, как самый тяжелый одноатомный газ. Чем более разрежен газ, тем худшим проводником тепла он является.

В целом передача энергии за счет теплопроводности для идеального газа - очень малоэффективный процесс.

Конвекция

Гораздо эффективнее для газа такой как конвекция, при которой внутренняя энергия распределяется посредством потока вещества, циркулирующего в поле тяготения. горячего газа формируется за счет архимедовой силы, поскольку он менее плотный вследствие Смещающийся вверх горячий газ постоянно замещается более холодным - устанавливается циркуляция газовых потоков. Поэтому для того, чтобы обеспечить эффективный, то есть наиболее быстрый, нагрев через конвекцию, необходимо подогревать резервуар с газом снизу - как и чайник с водой.

Если же необходимо отнять у газа какое-то количество теплоты, то холодильник эффективнее размещать вверху, так как отдавший энергию холодильнику газ будет устремляться вниз под действием тяготения.

Примером конвекции в газе является обогрев воздуха в помещениях при помощи отопительных систем (их размещают в комнате как можно ниже) или охлаждение с применением кондиционера, а в природных условиях явление тепловой конвекции служит причиной перемещения воздушных масс и влияет на погоду и климат.

При отсутствии силы тяжести (при невесомости в космическом корабле) конвекция, то есть циркуляция воздушных потоков, не устанавливается. Так что нет смысла зажигать на борту космического корабля газовые горелки или спички: горячие продукты сгорания не будут отводиться вверх, а кислород - подводиться к источнику огня, и пламя затухнет.

Лучистый перенос

Вещество может нагреваться и под действием теплового излучения, когда атомы и молекулы приобретают энергию, поглощая электромагнитные кванты - фотоны. При низких частотах фотонов этот процесс не очень эффективен. Вспомним, что, когда мы открываем микроволновую печку, то обнаруживаем там горячие продукты, но не горячий воздух. С повышением частоты излучения эффект лучевого нагрева повышается, например, в верхней атмосфере Земли сильно разреженный газ интенсивно нагревается и ионизируется солнечным ультрафиолетом.

Различные газы в разной степени поглощают тепловое излучение. Так, вода, метан, углекислый газ поглощают его довольно сильно. На этом свойстве основано явление парникового эффекта.

Первое начало термодинамики

Вообще говоря, изменение внутренней энергии через нагревание газа (теплообмен) также сводится к совершению работы либо молекул газа, либо над ними посредством внешней силы (что обозначается так же, но с обратным знаком). Какая же работа совершается при таком способе перехода из одного состояния в другое? Ответить на этот вопрос нам поможет закон сохранения энергии, точнее, его конкретизация применительно к поведению термодинамических систем - первое начало термодинамики.

Закон, или универсальный принцип сохранения энергии, в наиболее обобщенной форме гласит, что энергия не рождается из ничего и не пропадает бесследно, а лишь переходит из одной формы в другую. В отношении термодинамической системы это надо понимать так, что работа, совершаемая системой, выражается через разность между сообщаемым системе (идеальному газу) количеством теплоты и изменением ее внутренней энергии. Иначе говоря, на это изменение и на работу системы затрачивается сообщенное газу количество теплоты.

В виде формул это записывается гораздо проще: dA = dQ - dU, и соответственно, dQ = dU + dA.

Мы уже знаем, что эти величины не зависят от способа, которым совершается переход между состояниями. От способа зависит скорость этого перехода и, как следствие, эффективность.

Что касается второго начала термодинамики, то оно задает направление изменения: теплота не может быть переведена от более холодного (а значит, менее энергичного) газа к более горячему без дополнительных затрат энергии извне. Второе начало также указывает, что часть энергии, расходуемой системой на совершение работы, неизбежно диссипирует, теряется (не исчезает, а переходит в непригодную для использования форму).

Термодинамические процессы

Переходы между энергетическими состояниями идеального газа, могут иметь разный характер изменения тех или иных его параметров. Внутренняя энергия в процессах переходов разного типа также будет вести себя по разному. Рассмотрим кратко несколько видов таких процессов.

  • Изохорный процесс протекает без изменения объема, следовательно, газ никакой работы не совершает. Внутренняя энергия газа изменяется как функция разности конечной и начальной температур.
  • Изобарный процесс происходит при неизменном давлении. Газ совершает работу, а его тепловая энергия рассчитывается так же, как и в предыдущем случае.
  • Изотермический процесс характеризуется постоянной температурой, а, значит, и тепловая энергия не меняется. Количество теплоты, получаемое газом, целиком уходит на совершение работы.
  • Адиабатический, или адиабатный процесс протекает в газе без теплопередачи, в теплоизолированном резервуаре. Работа совершается только за счет затрат тепловой энергии: dA = - dU. При адиабатическом сжатии тепловая энергия увеличивается, при расширении - соответственно уменьшается.

Различные изопроцессы лежат в основе функционирования тепловых машин. Так, изохорный процесс имеет место в бензиновом двигателе при крайних положениях поршня в цилиндре, а второй и третий такты двигателя - это примеры адиабатического процесса. При получении сжиженных газов адиабатическое расширение играет важную роль - благодаря ему становится возможна конденсация газа. Изопроцессы в газах, при исследовании которых не обойтись без понятия о внутренней энергии идеального газа, характерны для многих явлений природы и находят применение в самых разных отраслях техники.

Вы видите взлетающую ракету. Она совершает работу – поднимает космонавтов и груз. Кинетическая энергия ракеты возрастает, так как по мере подъёма ракета приобретает всё большую скорость. Потенциальная энергия ракеты также возрастает, так как она всё выше поднимается над Землёй. Следовательно, сумма этих энергий, то есть механическая энергия ракеты, тоже увеличивается.

Мы помним, что при совершении телом работы его энергия уменьшается. Однако ракета совершает работу, но её энергия не уменьшается, а увеличивается! В чём же разгадка противоречия? Оказывается, что кроме механической энергии существует ещё один вид энергии – внутренняя энергия. Именно за счёт уменьшения внутренней энергии сгорающего топлива ракета совершает механическую работу и, кроме того, увеличивает свою механическую энергию.

Не только горючие , но и горячие тела обладают внутренней энергией, которую легко превратить в механическую работу. Проделаем опыт. Нагреем в кипятке гирю и поставим на жестяную коробочку, присоединённую к манометру. По мере того как воздух в коробочке будет прогреваться, жидкость в манометре начнёт двигаться (см. рисунок).

Расширяющийся воздух совершает над жидкостью работу. За счёт какой энергии это происходит? Разумеется, за счёт внутренней энергии гири. Следовательно, в этом опыте мы наблюдаем превращение внутренней энергии тела в механическую работу. Заметим, что механическая энергия гири в этом опыте не меняется – она всё время равна нулю.

Итак, внутренняя энергия – это такая энергия тела, за счёт которой может совершаться механическая работа, при этом не вызывая убыли механической энергии этого тела.

Внутренняя энергия любого тела зависит от множества причин: рода и состояния его вещества, массы и температуры тела и других. Внутренней энергией обладают все тела: большие и маленькие, горячие и холодные, твёрдые, жидкие и газообразные.

Наиболее легко на нужды человека может быть использована внутренняя энергия лишь, образно говоря, горячих и горючих веществ и тел. Это нефть, газ, уголь, геотермальные источники вблизи вулканов и так далее. Кроме того, в XX веке человек научился использовать и внутреннюю энергию так называемых радиоактивных веществ. Это, например, уран, плутоний и другие.

Взгляните на правую часть схемы. В популярной литературе нередко упоминаются тепловая, химическая, электрическая, атомная (ядерная) и другие виды энергии. Все они, как правило, являются разновидностями внутренней энергии, так как за счёт них может совершаться механическая работа, не вызывая при этом убыли механической энергии. Понятие внутренней энергии мы рассмотрим более подробно при дальнейшем изучении физики.

ВНУТРЕННЯЯ ЭНЕРГИЯ термодинамич. ф-ция состояния системы, ее энергия, определяемая внутр. состоянием. Внутренняя энергия складывается в осн. из кинетич. энергии движения частиц ( , ) и энергии взаимод. между ними (внутри- и межмолекулярной). На внутреннюю энергию влияет изменение внутр. состояния системы под действием внеш. поля; во внутреннюю энергию входит, в частности, энергия, связанная с во внеш. электрич. поле и намагничиванием во внеш. магн. поле. Кинетич. энергия системы как целого и потенциальная энергия, обусловленная пространств. расположением системы, во внутреннюю энергию не включаются. В определяется лишь изменение внутренней энергии в разл. процессах. Поэтому внутреннюю энергию задают с точностью до нек-рого постоянного слагаемого, зависящего от энергии, принятой за нуль отсчета.

Внутренняя энергия U как ф-ция состояния вводится , согласно к-рому разность между теплотой Q, переданной системе, и работой W, совершаемой системой, зависит только от начального и конечного состояний системы и не зависит от пути перехода, т.е. представляет изменение ф-ции состояния

где U 1 и U 2 - внутренняя энергия системы в начальном и конечном состояниях соответственно. Ур-ние (1) выражает в применении к термодинамич. процессам, т. е. процессам, в к-рых происходит передача теплоты. Для циклич. процесса, возвращающего систему в начальное состояние, . В изохорных процессах, т.е. процессах при постоянном объеме, система не совершает работы за счет расширения, W=0 и теплота, переданная системе, равна приращению внутренней энергии: Q v =. Для адиабатич. процессов, когда Q = 0, = - W.

Внутренняя энергия системы как ф-ция ее S, объема V и числа m i i-того компонента представляет собой . Это является следствием первого и и выражается соотношением:

"

где Т - абс. т-ра, р-давление,-хим. потенциал i-того компонента. Знак равенства относится к равновесным процессам, знак неравенства-к неравновесным. Для системы с заданными значениями S, V, m i ( в жесткой адиабатной оболочке) внутренняя энергия при минимальна. Убыль внутренней энергии в обратимых процессах при постоянных V и S равна макс. полезной работе (см. ).

Зависимость внутренней энергии равновесной системы от т-ры и объема U =f(T, V)наз. калорическим . Производная внутренней энергии по т-ре при постоянном объеме равна изохорной :

Внутренняя энергия от объема не зависит и определяется только т-рой.

Экспериментально определяют значение внутренней энергии в-ва, отсчитываемое от ее значения при абс. нуле т-ры. Определение внутренней энергии требует данных о С V (Т), теплотах , об ур-нии состояния. Изменение внутренней энергии при хим. р-циях (в частности, стандартная внутренняя энергия образования в-ва) определяется по данным о тепловых эффектах р-ций, а также по спектральным данным. Теоретич. расчет внутренней энергии осуществляется методами статистич. , к-рая определяет внутреннюю энергию как среднюю энергию системы в заданных условиях изоляции (напр., при заданных Т, V, m i). Внутренняя энергия одноатомного складывается из средней энергии поступат. движения и средней энергии возбужденных электронных состояний; для двух- и многоатомных к этому значению добавляется также средняя энергия вращения и их колебаний около положения . Внутренняя энергия 1



Рассказать друзьям