Накопитель энергии. Как накопить и сохранить энергию из возобновляемых источников

💖 Нравится? Поделись с друзьями ссылкой

Этот материал составлен на основе статьи «Обзор типов накопителей энергии», ранее опубликованной на http://khd2.narod.ru/gratis/accumul.htm, с добавлением нескольких абзацев из других источников, например, http://battery-info.ru/alternatives.

Одна из основных проблем альтернативной энергетики — неравномерность поступления ее из возобновляемых источников. Солнце светит только днем и в безоблачную погоду, ветер то дует, а то утихнет. Да и потребности в электроэнергии не постоянны, например, на освещение днем ее требуется меньше, вечером — больше. А людям нравится, когда по ночам города и деревни залиты огнями иллюминаций. Ну, или хотя бы просто улицы освещены. Вот и возникает задача — сохранить полученную энергию на какое-то время, чтобы использовать тогда, когда потребность в ней максимальна, а поступление недостаточно.

ГАЭС TaumSauk в США. Несмотря на небольшую мощность известна всему миру благодаря верхнему бассейну в форме сердца.

Существуют и менее масштабные гидравлические накопители гравитационной энергии. Вначале перекачиваем 10 т воды из подземного резервуара (колодца) в емкость на вышке. Затем вода из емкости под действием силы тяжести перетекает обратно в резервуар, вращая турбину с электрогенератором. Срок службы такого накопителя может составлять 20 и более лет. Достоинства: при использовании ветродвигателя последний может непосредственно приводить в движение водяной насос, вода из емкости на вышке может использоваться для других нужд.

К сожалению, гидравлические системы труднее поддерживать в должном техническом состоянии, чем твердотельные, - прежде всего это касается герметичности резервуаров и трубопроводов и исправности запорного и перекачивающего оборудования. И ещё одно важное условие - в моменты накопления и использования энергии рабочее тело (по крайней мере, его достаточно большая часть) должно находиться в жидком агрегатном состоянии, а не пребывать в виде льда или пара. Зато иногда в подобных накопителях возможно получение дополнительной даровой энергии, - скажем, при пополнении верхнего резервуара талыми или дождевыми водами.

Накопители механической энергии

Механическая энергия проявляется при взаимодей­ствии, движении отдельных тел или их частиц. К ней относят кинетическую энергию движения или вращения тела, энер­гию деформации при сгибании, растяжении, закручивании, сжатии упругих тел (пружин).

Гироскопические накопители энергии

Гироскопический накопитель Уфимцева.

В гироскопических накопителях энергия запасается в виде кинетической энергии быстро вращающегося маховика. Удельная энергия, запасаемая на каждый килограмм веса маховика, значительно больше той, что можно запасти в килограмме статического груза, даже подняв его на большую высоту, а последние высокотехнологичные разработки обещают плотность накопленной энергии, сравнимую с запасом химической энергии в единице массы наиболее эффективных видов химического топлива. Другой огромный плюс маховика - это возможность быстрой отдачи или приёма очень большой мощности, ограниченной лишь пределом прочности материалов в случае механической передачи или «пропускной способностью» электрической, пневматической либо гидравлической передач.

К сожалению, маховики чувствительны к сотрясениям и поворотам в плоскостях, отличных от плоскости вращения, поскольку при этом возникают огромные гироскопические нагрузки, стремящиеся погнуть ось. К тому же время хранения накопленной маховиком энергии относительно невелико и для традиционных конструкций обычно составляет от нескольких секунд до нескольких часов. Далее потери энергии на трение становятся слишком заметными… Впрочем, современные технологии позволяют кардинально увеличить время хранения - вплоть до нескольких месяцев.

Наконец, ещё один неприятный момент - запасённая маховиком энергия прямо зависит от его скорости вращения, поэтому по мере накопления или отдачи энергии скорость вращения всё время меняется. В то же время в нагрузке очень часто требуется стабильная скорость вращения, не превышающая нескольких тысяч оборотов в минуту. По этой причине чисто механические системы передачи энергии на маховик и обратно могут оказаться слишком сложными в изготовлении. Иногда упростить ситуацию может электромеханическая передача с использованием мотор-генератора, размещённого на одном валу с маховиком или связанного с ним жёстким редуктором. Но тогда неизбежны потери энергии на нагрев проводов и обмоток, которые могут быть гораздо выше, чем потери на трение и проскальзывание в хороших вариаторах.

Особенно перспективны так называемые супермаховики , состоящие из витков стальной ленты, проволоки или высокопрочного синтетического волокна. Навивка может быть плотной, а может иметь специально оставленное пустое пространство. В последнем случае по мере раскручивания маховика витки ленты перемещаются от его центра к периферии вращения, изменяя момент инерции маховика, а если лента пружинная, то и запасая часть энергии в энергии упругой деформации пружины. В результате в таких маховиках скорость вращения не так прямо связана с накопленной энергией и гораздо стабильнее, чем в простейших цельнотелых конструкциях, а их энергоёмкость заметно больше. Помимо большей энергоёмкости, они более безопасны в случае различных аварий, так как в отличии от осколков большого монолитного маховика, по своей энергии и разрушительной силе сравнимых с пушечными ядрами, обломки пружины обладают гораздо меньшей «поражающей способностью» и обычно достаточно эффективно тормозят лопнувший маховик за счёт трения о стенки корпуса. По этой же причине и современные цельнотелые маховики, рассчитанные на работу в режимах, близких к переделу прочности материала, часто изготавливаются не монолитными, а сплетёнными из тросов или волокон, пропитанных связующим веществом.

Современные конструкции с вакуумной камерой вращения и магнитным подвесом супермаховика из кевларового волокна обеспечивают плотность запасённой энергии более 5 МДж/кг, причём могут сохранять кинетическую энергию неделями и месяцами. По оптимистичным оценкам, использование для навивки сверхпрочного «суперкарбонового» волокна позволит увеличить скорость вращения и удельную плотность запасаемой энергии ещё во много раз - до 2-3 ГДж/кг (обещают, что одной раскрутки такого маховика весом 100-150 кг хватит для пробега в миллион километров и более, т.е. на фактически на всё время жизни автомобиля!). Однако стоимость этого волокна пока также во много раз превышает стоимость золота, так что подобные машины ещё не по карману даже арабским шейхам… Подробнее о маховичных накопителях можно почитать в книге Нурбея Гулиа .

Гирорезонансные накопители энергии

Эти накопители представляют собой тот же самый маховик, но выполненный из эластичного материала (например, резины). В результате у него появляются принципиально новые свойства. По мере нарастания оборотов на таком маховике начинают образовываться «выросты»-«лепестки» - сначала он превращается в эллипс, затем в «цветок» с тремя, четырьмя и более «лепестками»… При этом после начала образования «лепестков» скорость вращения маховика уже практически не меняется, а энергия запасается в резонансной волне упругой деформации материала маховика, формирующей эти «лепестки».

Такими конструкциями в конце 1970-х и начале 1980-х годов в Донецке занимался Н.З.Гармаш. Полученные им результаты впечатляют - по его оценкам, при рабочей скорости маховика, составляющей всего 7-8 тысяч об/мин, запасённой энергии было достаточно для того, чтобы автомобиль мог проехать 1500 км против 30 км с обычным маховиком тех же размеров. К сожалению, более свежие сведения об этом типе накопителей неизвестны.

Механические накопители с использованием сил упругости

Этот класс устройств обладает очень большой удельной ёмкостью запасаемой энергии. При необходимости соблюдения небольших габаритов (несколько сантиметров) его энергоёмкость - наибольшая среди механических накопителей. Если требования к массогабаритным характеристикам не столь жёсткие, то большие сверхскоростные маховики превосходят его по энергоёмкости, но они гораздо более чувствительны к внешним факторам и обладают намного меньшим временем хранения энергии.

Пружинные механические накопители

Сжатие и распрямление пружины способно обеспечить очень большой расход и поступление энергии в единицу времени - пожалуй, наибольшую механическую мощность среди всех типов накопителей энергии. Как и в маховиках, она ограничена лишь пределом прочноcти материалов, но пружины обычно реализуют рабочее поступательное движение непосредственно, а в маховиках без довольно сложной передачи не обойтись (не случайно в пневматическом оружии используются либо механические боевые пружины, либо баллончики с газом, которые по своей сути являются предварительно заряженными пневматическими пружинами; до появления огнестрельного оружия для боя на дистанции применялось также именно пружинное оружие - луки и арбалеты, ещё задолго до новой эры полностью вытеснившие в профессиональных войсках пращу с её кинетическим накоплением энергии).

Срок хранения накопленной энергии в сжатой пружине может составлять многие годы. Однако следует учитывать, что под действием постоянной деформации любой материал с течением времени накапливает усталость, а кристаллическая решётка металла пружины потихоньку изменяется, причём чем больше внутренние напряжения и чем выше окружающая температура, тем скорее и в большей степени это произойдёт. Поэтому через несколько десятилетий сжатая пружина, не изменившись внешне, может оказаться «разряженной» полностью или частично. Тем не менее, качественные стальные пружины, если они не подвергаются перегреву или переохлаждению, способны работать веками без видимой потери ёмкости. Например, старинные настенные механические часы с одного полного завода по-прежнему идут две недели - как и более полувека назад, когда они были изготовлены.

При необходимости постепенной равномерной «зарядки» и «разрядки» пружины обеспечивающий это механизм может оказаться весьма сложным и капризным (загляните в те же механические часы - по сути, множество шестерёнок и других деталей служат именно этой цели). Упростить ситуацию может электромеханическая передача, но она обычно накладывает существенные ограничения на мгновенную мощность такого устройства, а при работе с малыми мощностями (несколько сот ватт и менее) её КПД слишком низок. Отдельной задачей является накопление максимальной энергии в минимальном объёме, так как при этом возникают механические напряжения, близкие к пределу прочности используемых материалов, что требует особо тщательных расчётов и безупречного качества изготовления.

Говоря здесь о пружинах, нужно иметь в виду не только металлические, но и другие упругие цельнотелые элементы. Самые распространённые среди них - это резиновые жгуты. Кстати, по энергии, запасаемой на единицу массы, резина превосходит сталь в десятки раз, зато и служит она примерно во столько же раз меньше, причём, в отличии от стали, теряет свои свойства уже через несколько лет даже без активного использования и при идеальных внешних условиях - в силу относительно быстрого химического старения и деградации материала.

Газовые механические накопители

В этом классе устройств энергия накапливается за счёт упругости сжатого газа. При избытке энергии компрессор закачивает газ в баллон. Когда требуется использовать запасённую энергию, сжатый газ подаётся в турбину, непосредственно выполняющую необходимую механическую работу или вращающую электрогенератор. Вместо турбины можно использовать поршневой двигатель, который более эффективен при небольших мощностях (кстати, существуют и обратимые поршневые двигатели-компрессоры).

Практически каждый современный промышленный компрессор оснащён подобным аккумулятором - ресивером. Правда, давление там редко превышает 10 атм, и потому запас энергии в таком ресивере не очень большой, но и это обычно позволяет в несколько раз увеличить ресурс установки и сэкономить энергию.

Газ, сжатый до давления в десятки и сотни атмосфер, может обеспечить достаточно высокую удельную плотность запасённой энергии в течение практически неограниченного времени (месяцы, годы, а при высоком качестве ресивера и запорной арматуры - десятки лет, - недаром пневматическое оружие, использующее баллончики со сжатым газом, получило такое широкое распространение). Однако входящие в состав установки компрессор с турбиной или поршневой двигатель, - устройства достаточно сложные, капризные и имеющие весьма ограниченный ресурс.

Перспективной технологией создания запасов энергии является сжатие воздуха за счет доступной энергии в то время, когда непосредственная потребность в последней отсутствует. Сжатый воздух охлаждается и хранится при давлении 60-70 атмосфер. При необходимости расходовать запасенную энергию, воздух извлекается из накопителя, нагревается, а затем поступает в специальную газовую турбину, где энергия сжатого и нагретого воздуха вращает ступени турбины, вал которой соединен с электрическим генератором, выдающим электроэнергию в энергосистему.

Для хранения сжатого воздуха предлагается, например, использовать подходящие горные выработки или специально создаваемые подземные емкости в соляных породах. Концепция не нова, хранение сжатого воздуха в подземной пещере было запатентовано еще в 1948 году, а первый завод с накопителем энергии сжатого воздуха (CAES - compressed air energy storage) с мощностью 290 МВт работает на электростанции Huntorf в Германии с 1978 года. На этапе сжатия воздуха большое количество энергии теряется в виде тепла. Эта утерянная энергия должна быть компенсирована сжатому воздуху до этапа расширения в газовой турбине, для этого и используется углеводородное топливо, с помощью которого повышают температуру воздуха. Это значит, что установки имеют далеко не стопроцентный КПД.

Существует перспективное направление для повышения эффективности CAES. Оно заключается в удержании и сохранении тепла, выделяющегося при работе компрессора на этапе сжатия и охлаждения воздуха, с последующим его повторным использованием при обратном нагреве холодного воздуха (т.н. рекуперация). Тем не менее, этот вариант CAES имеет существенные технические сложности, особенно в направлении создания системы длительного сохранения тепла. В случае решения этих проблем, AA-CAES (Advanced Adiabatic-CAES) может проложить путь для крупномасштабных систем хранения энергии, проблема была поднята исследователями по всему миру.

Участники канадского стартапа Hydrostor другое необычное решение - закачивать энергию в подводные пузыри.

Накопление тепловой энергии

В наших климатических условиях очень существенная (зачастую - основная) часть потребляемой энергии расходуется на обогрев. Поэтому было бы очень удобно аккумулировать в накопителе непосредственно тепло и затем получать его обратно. К сожалению, в большинстве случаев плотность запасённой энергии очень мала, а сроки её сохранения весьма ограничены.

Существуют тепловые аккумуляторы с твёрдым либо плавящимся теплоаккумулирующим материалом; жидкостные; паровые; термохимические; с электронагревательным элементом. Тепловые аккумуляторы могут подключаться в систему с твердотопливным котлом, в гелиосистему или комбинированную систему.

Накопление энергии за счёт теплоёмкости

В накопителях этого типа аккумулирование тепла осуществляется за счет теплоемкости вещества, служащего рабочим телом. Классическим примером теплового аккумулятора может служить русская печь. Ее протапливали один раз в день и она потом обогревала дом в течение суток. В наше время под тепловым аккумулятором чаще всего подразумевают ёмкости для хранения горячей воды, обшитые материалом с высокими теплоизоляционными свойствами.

Существуют теплоаккумуляторы и на основе твердых теплоносителей, например, в керамических кирпичах.

Различные вещества обладают разной теплоёмкостью. У большинства она находится в пределах от 0.1 до 2 кДж/(кг·К). Аномально большой теплоёмкостью обладает вода - её теплоёмкость в жидкой фазе составляет примерно 4.2 кДж/(кг·К). Более высокую теплоёмкость имеет только весьма экзотический литий - 4.4 кДж/(кг·К).

Однако помимо удельной теплоёмкости (по массе) надо учитывать и объёмную теплоёмкость , позволяющую определить, сколько тепла нужно, чтобы изменить на одну и ту же величину температуру одного и того же объёма различных веществ. Она вычисляется из обычной удельной (массовой) теплоёмкости умножением её на удельную плотность соответствующего вещества. На объёмную теплоёмкость следует ориентироваться тогда, когда важнее объём теплоаккумулятора, чем его вес. Например, удельная теплоёмкость стали всего 0.46 кДж/(кг·К), но плотность 7800 кг/куб.м, а, скажем, у полипропилена - 1.9 кДж/(кг·К) - в 4 с лишним раза больше, однако плотность его составляет всего 900 кг/куб.м. Поэтому при одинаковом объёме сталь сможет запасти в 2.1 раза больше тепла, чем полипропилен, хотя и будет тяжелее почти в 9 раз. Впрочем, благодаря аномально большой теплоёмкости воды ни один материал не может превзойти её и по объёмной теплоёмкости. Однако объёмная теплоемкость железа и его сплавов (сталь, чугун) отличается от воды менее, чем на 20% - в одном кубическом метре они могут запасти более 3.5 МДж тепла на каждый градус изменения температуры, чуть-чуть меньше объёмная теплоёмкость у меди - 3.48 МДж/(куб.м·К). Теплоёмкость воздуха в нормальных условиях составляет примерно 1 кДж/кг, или 1.3 кДж/куб.м, поэтому чтобы нагреть кубометр воздуха на 1°, достаточно охладить на тот же градус чуть менее 1/3 литра воды (естественно, более горячей, чем воздух).

В силу простоты устройства (что может быть проще неподвижного сплошного куска твёрдого вещества либо закрытого резервуара с жидким теплоносителем?) подобные накопители энергии имеют практически неограниченное число циклов накопления-отдачи энергии и очень длительный срок службы - для жидких теплоносителей до высыхания жидкости либо до повреждения резервуара от коррозии или других причин, для твёрдотельных отсутствуют и эти ограничения. Но вот время хранения весьма ограничено и, как правило, составляет от нескольких часов до нескольких суток - на больший срок обычная теплоизоляция удержать тепло уже не способна, да и удельная плотность запасаемой энергии невелика.

Наконец, следует подчеркнуть ещё одно обстоятельство, - для эффективной работы важна не только теплоёмкость, но и теплопроводность вещества теплоаккумулятора. При высокой теплопроводности даже на достаточно быстрые изменения наружных условий теплоаккумулятор отреагирует всей своей массой, а следовательно и всей запасённой энергией - то есть максимально эффективно. В случае же плохой теплопроводности среагировать успеет только поверхностная часть теплоаккумулятора, а до глубинных слоёв кратковременные изменения внешних условий просто не успеют дойти, и существенная часть вещества такого теплоаккумулятора будет фактически исключена из работы. Полипропилен, упомянутый в рассмотренном чуть выше примере, имеет теплопроводность почти в 200 раз меньше, чем сталь, и потому, невзирая на достаточно большую удельную теплоёмкость, эффективным теплоаккумулятором быть не может. Впрочем, технически проблема легко решается организацией специальных каналов для циркуляции теплоносителя внутри теплоаккумулятора, но очевидно, что такое решение существенно усложняет конструкцию, снижает её надёжность и энергоёмкость и непременно будет требовать периодического техобслуживания, которое вряд ли нужно монолитному куску вещества.

Как это не покажется странным, иногда нужно бывает накапливать и хранить не тепло, а холод. В США уже более десяти лет работают компании, которые предлагают «аккумуляторы» на основе льда для установки в кондиционеры воздуха. В ночное время, когда электроэнергии в избытке и она продаётся по сниженным тарифам, кондиционер замораживает воду, то есть переходит в режим холодильника. В дневное время он потребляет в несколько раз меньше энергии, работая как вентилятор. Энергопрожорливый компрессор на это время отключается. Подробнее .

Накопление энергии при смене фазового состояния вещества

Если внимательно посмотреть на тепловые параметры различных веществ, то можно увидеть, что при смене агрегатного состояния (плавлении-твердении, испарении-конденсации) происходит значительное поглощение или выделение энергии. Для большинства веществ тепловой энергии таких превращений достаточно, чтобы изменить температуру того же количества этого же вещества на многие десятки, а то и сотни градусов в тех диапазонах температур, где его агрегатное состояние не меняется. А ведь, как известно, пока агрегатное состояние всего объёма вещества не станет одним и тем же, его температура практически постоянна! Поэтому было бы очень заманчиво накапливать энергию за счёт смены агрегатного состояния - энергии накапливается много, а температура изменяется мало, так что в результате не потребуется решать проблемы, связанные с нагревом до высоких температур, и в то же время можно получить хорошую ёмкость такого теплоаккумулятора.

Плавление и кристаллизация

К сожалению, в настоящее время практически нет дешёвых, безопасных и устойчивых к разложению веществ с большой энергией фазового перехода, температура плавления которых лежала бы в наиболее актуальном диапазоне - примерно от +20°С до +50°С (максимум +70°С - это ещё относительно безопасная и легко достижимая температура). Как правило, в этом диапазоне температур плавятся сложные органические соединения, отнюдь не полезные для здоровья и зачастую быстро окисляющиеся на воздухе.

Пожалуй, наиболее подходящими веществами являются парафины, температура плавления большинства которых в зависимости от сорта лежит в диапазоне 40..65°С (правда, существуют и «жидкие» парафины с температурой плавления 27°С и менее, а также родственный парафинам природный озокерит , температура плавления которого лежит в пределах 58..100°С). И парафины, и озокерит вполне безопасны и используются в том числе и в медицинских целях для непосредственного прогрева больных мест на теле. Однако при хорошей теплоёмкости теплопроводность их весьма мала - мала настолько, что приложенный к телу парафин или озокерит, нагретый до 50-60°С, ощущается лишь приятно горячим, но не обжигающим, как это было бы с водой, нагретой до той же температуры, - для медицины это хорошо, но для теплоаккумулятора это безусловный минус. Кроме того, эти вещества не так уж дёшевы, скажем, оптовая цена на озокерит в сентябре 2009 г. составляла порядка 200 рублей за килограмм, а килограмм парафина стоил от 25 рублей (технический) до 50 и выше (высокоочищенный пищевой, т.е. пригодный для использования при упаковке продуктов). Это оптовые цены для партий в несколько тонн, в розницу всё дороже как минимум раза в полтора.

В результате экономическая эффективность парафинового теплоаккумулятора оказывается под большим вопросом, - ведь килограмм-другой парафина или озокерита годится лишь для медицинского прогрева заломившей поясницы в течении пары десятков минут, а для обеспечения стабильной температуры более-менее просторного жилища в течении хотя бы суток масса парафинового теплоаккумулятора должна измеряться тоннами, так что его стоимость сразу приближается к стоимости легкового автомобиля (правда, нижнего ценового сегмента)! Да и температура фазового перехода в идеале всё же должна точно соответствовать комфортному диапазону (20..25°С) - иначе всё равно придётся организовывать какую-то систему регулирования теплообмена. Тем не менее, температура плавления в районе 50..54°С, характерная для высокоочищенных парафинов, в сочетании с высокой теплотой фазового перехода (немногим более 200 кДж/кг) очень хорошо подходит для теплоаккумкулятора, рассчитанного на обеспечение горячего водоснабжения и водяного отопления, проблема лишь в невысокой теплопроводности и высокой цене парафина. Зато в случае форс-мажора сам парафин можно использовать в качестве топлива с хорошей теплотворной способностью (хотя сделать это не так просто - в отличии от бензина или керосина, жидкий и тем более твёрдый парафин на воздухе не горит, обязательно нужен фитиль или другое устройство для подачи в зону горения не самого парафина, а только его паров)!

Примером накопителя тепловой энергии на основе эффекта плавления и кристаллизации может служить система хранения тепловой энергии TESS на основе кремния, которую разработала австралийская компания Latent Heat Storage.

Испарение и конденсация

Теплота испарения-конденсации, как правило, в несколько раз превышает теплоту плавления-кристаллизации. И вроде бы есть не так уж мало веществ, испаряющихся в нужном диапазоне температур. Помимо откровенно ядовитых сероуглерода, ацетона, этилового эфира и т.п., есть и этиловый спирт (его относительная безопасность ежедневно доказывается на личном примере миллионами алкоголиков по всему миру!). В нормальных условиях спирт кипит при 78°С, а его теплота испарения в 2.5 раза больше теплоты плавления воды (льда) и эквивалентна нагреву того же количества жидкой воды на 200°. Однако в отличии от плавления, когда изменения объёма вещества редко превышают несколько процентов, при испарении пар занимает весь предоставленный ему объём. И если этот объём будет неограничен, то пар улетучится, безвозвратно унося с собой всю накопленную энергию. В замкнутом же объёме сразу начнёт расти давление, препятствуя испарению новых порций рабочего тела, как это имеет место в самой обычной скороварке, поэтому смену агрегатного состояния испытывает лишь небольшой процент рабочего вещества, остальное же продолжает нагреваться, находясь в жидкой фазе. Здесь открывается большое поле деятельности для изобретателей - создание эффективного теплоаккумулятора на основе испарения и конденсации с герметичным переменным рабочим объёмом.

Фазовые переходы второго рода

Помимо фазовых переходов, связанных с изменением агрегатного состояния, некоторые вещества и в рамках одного агрегатного состояния могут иметь несколько различных фазовых состояний. Смена таких фазовых состояний, как правило, также сопровождается заметным выделением или поглощением энергии, хотя обычно гораздо менее значительным, чем при изменении агрегатного состояния вещества. Кроме того, во многих случаях при подобных изменениях в отличии от смены агрегатного состояния имеет место температурный гистерезис - температуры прямого и обратного фазового перехода могут существенно различаться, иногда на десятки и даже на сотни градусов.

Электрические накопители энергии

Электричество - наиболее удобная и универсальная форма энергии в современном мире. Не удивительно, что именно накопители электрической энергии развиваются наиболее быстро. К сожалению, в большинстве случаев удельная ёмкость недорогих устройств невелика, а устройства с высокой удельной ёмкостью пока слишком дороги для хранения больших запасов энергии при массовом применении и весьма недолговечны.

Конденсаторы

Самые массовые «электрические» накопители энергии - это обычные радиотехнические конденсаторы. Они обладают огромной скоростью накопления и отдачи энергии - как правило, от нескольких тысяч до многих миллиардов полных циклов в секунду, и способны так работать в широком диапазоне температур многие годы, а то и десятилетия. Объединяя несколько конденсаторов параллельно, легко можно увеличить их суммарную ёмкость до нужной величины.

Конденсаторы можно разделить на два больших класса - неполярные (как правило, «сухие», т.е. не содержащие жидкого электролита) и полярные (обычно электролитические). Использование жидкого электролита обеспечивает существенно бóльшую удельную ёмкость, но почти всегда требует соблюдения полярности при подключении. Кроме того, электролитические конденсаторы часто более чувствительные к внешним условиям, прежде всего к температуре и имеют меньший срок службы (с течением времени электролит улетучивается и высыхает).

Однако у конденсаторов есть два основных недостатка. Во-первых, это весьма малая удельная плотность запасаемой энергии и потому небольшая (относительно других видов накопителей) ёмкость. Во-вторых, это малое время хранения, которое обычно исчисляется минутами и секундами и редко превышает несколько часов, а в некоторых случаях составляет лишь малые доли секунды. В результате область применения конденсаторов ограничивается различными электронными схемами и кратковременным накоплением, достаточным для выпрямления, коррекции и фильтрации тока в силовой электротехнике - на большее их пока не хватает.

Которые иногда называют «суперконденсаторами», можно рассматривать как своего рода промежуточное звено между электролитическими конденсаторами и электрохимическими аккумуляторами. От первых они унаследовали практически неограниченное количество циклов заряда-разряда, а от вторых - относительно невысокие токи зарядки и разрядки (цикл полной зарядки-разрядки может длиться секунду, а то и намного дольше). Ёмкость их также находится в диапазоне между наиболее ёмкими конденсаторами и небольшими аккумуляторами - обычно запас энергии составляет от единиц до нескольких сотен джоулей.

Дополнительно следует отметить достаточно высокую чувствительность ионисторов к температуре и ограниченное время хранения заряда - от нескольких часов до нескольких недель максимум.

Электрохимические аккумуляторы

Электрохимические аккумуляторы были изобретены ещё на заре развития электротехники, и сейчас их можно встретить повсюду - от мобильного телефона до самолётов и кораблей. Вообще говоря, они работают на основе некоторых химических реакций и поэтому их можно было бы отнести к следующему разделу нашей статьи -«Химические накопители энергии». Но поскольку этот момент обычно не подчеркивается, а обращается внимание на то, что аккумуляторы накапливают электричество, рассмотрим их здесь.

Как правило, при необходимости запасать достаточно большую энергию - от нескольких сотен килоджоулей и более - используются свинцово-кислотные аккумуляторы (пример - любой автомобиль). Однако они имеют немалые габариты и, главное, вес. Если же требуется малый вес и мобильность устройства, то используются более современные типы аккумуляторов - никель-кадмиевые, металл-гидридные, литий-ионные, полимер-ионные и др. Они имеют гораздо более высокую удельную ёмкость, однако и удельная стоимость хранения энергии у них заметно выше, поэтому их применение обычно ограничивается относительно небольшими и экономичными устройствами, такими как мобильные телефоны, фото- и видеокамеры, ноутбуки и т.п.

В последнее время на гибридных автомобилях и электромобилях начали применяться мощные литий-ионные аккумуляторы. Помимо меньшего веса и большей удельной ёмкости, в отличие от свинцово-кислотных они позволяют практически полностью использовать свою номинальную ёмкость, считаются более надёжными и имеющими бóльший срок службы, а их энергетическая эффективность в полном цикле превышает 90%, в то время как энергетическая эффективность свинцовых аккумуляторов при заряде последних 20% ёмкости может падать до 50%.

По режиму использования электрохимические аккумуляторы (прежде всего мощные) также подразделяются на два больших класса - так называемые тяговые и стартовые. Обычно стартовый аккумулятор достаточно успешно может работать в качестве тягового (главное - контролировать степень разряда и не доводить его до такой глубины, которая допустима для тяговых аккумуляторов), а вот при обратном применении слишком большой ток нагрузки может очень быстро вывести тяговый аккумулятор из строя.

К недостаткам электрохимических аккумуляторов можно отнести весьма ограниченное число циклов заряда-разряда (в большинстве случаев от 250 до 2000, а при несоблюдении рекомендаций производителей - гораздо меньше), и даже при отсутствии активной эксплуатации большинство типов аккумуляторов через несколько лет деградируют, утрачивая свои потребительские свойства. При этом срок службы многих видов аккумуляторов идёт не с начала их эксплуатации, а с момента изготовления. Кроме того, для электрохимических аккумуляторов характерны чувствительность к температуре, длительное время заряда, иногда в десятки раз превышающее время разряда, и необходимость соблюдения методики использования (недопущение глубокого разряда для свинцовых аккумуляторов и, наоборот, соблюдение полного цикла заряда-разряда для металл-гидридных и многих других типов аккумуляторов). Время хранения заряда также довольно ограничено - обычно от недели до года. У старых аккумуляторов уменьшается не только ёмкость, но и время хранения, причём и то, и другое может сократиться во много раз.

Химические накопители энергии

Химическая энергия - это энергия, «запасенная» в атомах веществ, которая высвобождается или поглощается при хими­ческих реакциях между веществами. Химическая энергия либо выделяется в виде тепловой при проведении экзотермических реакций (например, горении топлива), либо преобразуется в электрическую в гальваничес­ких элементах и аккумуляторах. Эти источники энергии ха­рактеризуются высоким КПД (до 98 %), но низкой емкостью.

Химические накопители энергии позволяют получать энергию как в том виде, из которого она запасалась, так и в любом другом. Можно выделить «топливные» и «безтопливные» разновидности. В отличии от низкотемпературных термохимических накопителей (о них чуть позже), которые могут запасти энергию, просто будучи помещёнными в достаточно тёплое место, здесь не обойтись без специальных технологий и высокотехнологичного оборудования, иногда весьма громоздкого. В частности, если в случае низкотемпературных термохимических реакций смесь реагентов обычно не разделяется и всегда находится в одной и той же ёмкости, реагенты для высокотемпературных реакций хранятся отдельно друг от друга и соединяются лишь тогда, когда нужно получить энергию.

Накопление энергии наработкой топлива

На этапе накопления энергии происходит химическая реакция, в результате которой восстанавливается топливо, например, из воды выделяется водород - прямым электролизом, в электрохимических ячейках с использованием катализатора или с помощью термического разложения, скажем, электрической дугой или сильно сконцентрированным солнечным светом. «Освободившийся» окислитель может быть собран отдельно (для кислорода это необходимо в условиях замкнутого изолированного объекта - под водой или в космосе) либо за ненадобностью «выброшен», поскольку в момент использования топлива этого окислителя будет вполне достаточно в окружающей среде и нет необходимости тратить место и средства на его организованное хранение.

На этапе извлечения энергии наработанное топливо окисляется с выделением энергии непосредственно в нужной форме, независимо от того, каким способом было получено это топливо. Например, водород может дать сразу тепло (при сжигании в горелке), механическую энергию (при подаче его в качестве топлива в двигатель внутреннего сгорания или турбину) либо электричество (при окислении в топливной ячейке). Как правило, такие реакции окисления требуют дополнительной инициации (поджига), что весьма удобно для управления процессом извлечения энергии.

Накопление энергии с помощью термохимических реакций

Давно и широко известна большая группа химических реакций, которые в закрытом сосуде при нагревании идут в одну сторону с поглощением энергии, а при охлаждении - в обратную с выделением энергии. Такие реакции часто называют термохимическими . Энергетическая эффективность таких реакций, как правило, меньше, чем при смене агрегатного состояния вещества, однако тоже весьма заметна.

Подобные термохимические реакции можно рассматривать как своего рода смену фазового состояния смеси реагентов, и проблемы здесь возникают примерно те же - трудно найти дешёвую, безопасную и эффективную смесь веществ, успешно действующую подобным образом в диапазоне температур от +20°С до +70°С. Впрочем, один подобный состав известен уже давно - это глауберова соль.

Мирабилит (он же глауберова соль, он же десятиводный сульфат натрия Na 2 SO 4 · 10H 2 O) получают в результате элементарных химических реакций (например, при добавлении поваренной соли в серную кислоту) или добывают в «готовом виде» как полезное ископаемое.

С точки зрения аккумуляции тепла наиболее интересная особенность мирабилита заключается в том, что при повышении температуры выше 32°С связанная вода начинает освобождаться, и внешне это выглядит как «плавление» кристаллов, которые растворяются в выделившейся из них же воде. При снижении температуры до 32°С свободная вода вновь связывается в структуру кристаллогидрата - происходит «кристаллизация». Но самое главное - теплота этой реакции гидратации-дегидратации весьма велика и составляет 251 кДж/кг, что заметно выше теплоты «честного» плавления-кристаллизации парафинов, хотя и на треть меньше, чем теплота плавления льда (воды).

Таким образом, теплоаккумулятор на основе насыщенного раствора мирабилита (насыщенного именно при температуре выше 32°С) может эффективно поддерживать температуру на уровне 32°С с большим ресурсом накопления или отдачи энергии. Конечно, для полноценного горячего водоснабжения эта температура слишком низка (душ с такой температурой в лучшем случае воспринимается как «весьма прохладный»), но вот для подогрева воздуха такой температуры может оказаться вполне достаточно.

Подробнее о теплоаккумуляторе на основе мирабилита можно прочитать на сайте «DelaySam.ru» .

Безтопливное химическое накопление энергии


Банка кофе с разогревом за счёт гашения извести .

В данном случае на этапе «зарядки» из одних химических веществ образуются другие, и в ходе этого процесса в образующихся новых химических связях запасается энергия (скажем, гашёная известь при помощи нагрева переводится в негашёное состояние).

При «разрядке» происходит обратная реакция, сопровождаемая выделением ранее запасённой энергии (обычно в виде тепла, иногда дополнительно в виде газа, который можно подать в турбину) - в частности, именно это имеет место при «гашении» извести водой. В отличие от топливных методов, для начала реакции обычно достаточно просто соединить реагенты друг с другом - дополнительная инициация процесса (поджиг) не требуется.

По сути, это разновидность термохимической реакции, однако в отличии от низкотемпературных реакций, описанных при рассмотрении тепловых накопителей энергии и не требующих каких-то особых условий, здесь речь идёт о температурах в многие сотни, а то и тысячи градусов. В результате количество энергии, запасаемой в каждом килограмме рабочего вещества, существенно возрастает, но и оборудование во много раз сложнее, объёмнее и дороже, чем пустые пластиковые бутылки или простой бак для реагентов.

Необходимость расхода дополнительного вещества - скажем, воды для гашения извести - не является существенным недостатком (при необходимости можно собрать воду, выделяющуюся при переходе извести в негашёное состояние). А вот особые условия хранения этой самой негашёной извести, нарушение которых чревато не только химическими ожогами, но и взрывом, переводят этот и ему подобные способы в разряд тех, которые вряд ли выйдут в широкую жизнь.

Другие типы накопителей энергии

Помимо описанных выше, есть и другие типы накопителей энергии. Однако в настоящее время они весьма ограничены по плотности запасаемой энергии и времени её хранения при высокой удельной стоимости. Поэтому пока они больше применяются для развлечения, а их эксплуатация в сколько-нибудь серьёзных целях не рассматривается. Примером являются фосфорецирующие краски, запасающие энергию от яркого источника света и затем светящиеся в течение нескольких секунд, а то и долгих минут. Их современные модификации уже давно не содержат ядовитого фосфора и вполне безопасны даже для использования в детских игрушках.

Суперпроводящие накопители магнитной энергии хранят её в поле большой магнитной катушки с постоянным током. Она может быть преобразована в переменный электрический ток по мере необходимости. Низкотемпературные накопители охлаждаются жидким гелием и доступны для промышленных предприятий. Высокотемпературные накопители, охлаждаемые жидким водородом, всё ещё находятся в стадии разработки и могут стать доступны в будущем.

Суперпроводящие накопители магнитной энергии имеют значительные размеры и обычно используются в течение коротких периодов времени, например, во время переключений.

Скорее всего в этой статье отражены не все возможные способы накопления и сохранения энергии. Вы можете сообщить о других вариантах либо в комментариях, либо электронным письмом на адрес kos at altenergiya dot ru.

Страница 10 из 23

Все рассмотренные выше НЭ имели электромеханическое устройство управления, что обусловливало их невысокую маневренность.

Рис. 2.7. Схемы подключения НЭЭ:
а - шунтовая; б - линейная
Накопители электрической энергии (НЭЭ) соединяются с ЭЭС посредством управляемого вентильного преобразователя*, время реверса мощности которого составляет 0,01 с, что определяет их высокую маневренность, а следовательно, возможность комплексного использования в ЭЭС.

*Так как накопление электрической энергии возможно только при постоянном токе.

К накопителям электрической энергии относятся:
топливные элементы (ТЭ);
электрохимические аккумуляторные батареи (ЭАБ);
сверхпроводниковые индуктивные накопители (СПИН);
емкостные накопители (ЕН).
Существует два способа подключения НЭЭ к энергосистеме- шунтовой и линейный, соответствующие им схемы приведены на рис. 2.7, а, б.
Рассмотрим подробнее блоки накопителей электрической энергии.

Устройство управления НЭЭ.

Оно может быть выполнено по трехфазной мостовой схеме, имеющей высокие технические показатели и хорошо зарекомендовавшей себя при эксплуатации существующих преобразователей большой мощности. Число мостов в устройстве управления НЭЭ определяется как реально выполнимой мощностью тиристорного моста, так и режимными соображениями, рассматриваемыми ниже.


Рис. 2.8. Схема последовательного включения модулей 12-пульсных преобразователей, составляющих УУ:
1 - аккумулирующий элемент; 2 - выключатель; 3- междуфазный реактор; 4 - преобразовательный мост; 5- трансформатор; 6 - трехфазная сеть
Каждый мост присоединен к сети переменного тока через отдельный трансформатор. С целью обеспечения 12-пульсного режима преобразования, обладающего рядом преимуществ по сравнению с шестипульсным (меньше пульсации постоянного напряжения, лучше гармонический состав переменного напряжения и др.), вторичные обмотки одной половины трансформаторов соединены в «треугольник», а другой- в «звезду» (рис. 2.8).
Для увеличения коэффициента мощности НЭЭ, определяемого углами регулирования и коммутации преобразовательного устройства, а также степенью искажения формы кривой переменного напряжения, к шинам переменного тока станции подключаются различные компенсирующие устройства - синхронные компенсаторы, статические тиристорные компенсаторы, фильтрокомпенсирующие устройства. Потребление реактивной мощности может быть уменьшено путем разделения преобразователя на ряд последовательно включенных модулей.

В процессе работы углы управления всех модулей, кроме одного, поддерживаются равными 0°. Один из них имеет угол, определяющийся требуемым напряжением. Все модули, имеющие нулевой угол, требуют лишь минимальной реактивной мощности - для коммутации.
На рис. 2.8 показана возможная схема преобразователя, выполненного в целях уменьшения потребления реактивной мощности. Преобразователь представляет собой последовательное соединение 12-пульсных модулей, содержащих силовые трансформаторы. Каждый модуль рассчитан на 4,5 кВ и состоит из двух 6-пульсных мостов, соединенных параллельно с междуфазным реактором, уравновешивающим ток. Два модуля имеют значения тока 50 кА, два других - 30 и 20 кА. Например, при максимальном токе АЭ накопителя каждый 6-пульсный мост обеспечивает постоянный ток 25 кА. Если 12-пульсный модуль закоротить механическим выключателем при нулевом значении напряжения и затем отключить его от трехфазной сети, улучшится полный КПД преобразователя, так как на четырех последовательно соединенных тиристорах устранится падение прямого напряжения.
Значение выдаваемой активной мощности НЭЭ должно во всех режимах его работы определяться системными требованиями и не зависеть от изменяющегося напряжения на самом АЭ. Один из способов обеспечения выполнения этого условия - регулирование углов управления вентилей. Применение управляемых преобразователей в в качестве связующего звена между АЭ и сетью переменного тока позволяет за счет соответствующего изменения углов включения вентилей в течение цикла заряда- разряда НЭЭ осуществить практически любой закон регулирования мощности. При этом мощность на шинах переменного напряжения будет зависеть от соотношения между напряжением на АЭ и противо-ЭДС преобразователя, определяемой значением углов управления. Однако этот способ управления имеет ряд ограничений. Поскольку мощность преобразовательного устройства НЭЭ может достигать нескольких сотен мегаватт, плечи мостов должны собираться из последовательно-параллельно включенных вентилей. С целью ограничения перенапряжений параллельно к ним необходимо подключать активно-емкостные демпфирующие цепочки. При глубоком регулировании преобразователей на плечах моста и его отдельных вентилях появляются скачки обратного напряжения. Необходимые для их ограничения параметры демпфирующих цепочек становятся, неприемлемыми из-за потерь мощности в них. При применении других защитных устройств (например, лавинных диодов) данная проблема остается. Использование тиристоров в мощных преобразовательных установках еще больше увеличивает число вентилей в плечах моста и предъявляет более жесткие требования к устройствам их защиты.


Рис. 2.9. Схема переключения преобразователей УУ


Рис. 2.10. Внешняя характеристика преобразователя
С другой стороны, при глубоком симметричном регулировании за счет фазового сдвига тока относительно напряжения на шинах станции преобладает реактивная составляющая мощности.

Для ее компенсации требуется неприемлемо большая мощность компенсирующих устройств (в пределе равная мощности станции). Эти обстоятельства затрудняют возможность регулирования,в широких пределах углов управления. Увеличить их значения можно за счет применения поочередного управления преобразователей, при котором одна часть мостов работает в выпрямительном режиме, а другая - в инверторном. При таком несимметричном законе управления можно расширить предел регулирования выходного напряжения преобразователя при приемлемом коэффициенте мощности станции. Однако полностью возложить функцию управления НЭЭ на регулирование углов включения вентилей, видимо, нельзя. Его целесообразно сочетать с другими способами обеспечения независимости мощности на шинах НЭЭ от напряжения на АЭ.
На рис. 2.9 изображена схема УУ НЭЭ (для случая, когда преобразовательное устройство станции состоит из двух мостов), позволяющая изменить противо-ЭДС преобразователя (в зависимости от напряжения на АЭ) за счет переключения мостов из параллельного соединения в последовательное при заряде НЭЭ и, наоборот, при его разряде. Она применима для любого числа преобразовательных мостов на станции. Анод каждого моста должен соединяться через коммутационные аппараты с анодом и катодом предыдущего по ходу тока моста и анодом последующего, а катод - с анодом и катодом следующего по ходу тока моста и катодом предыдущего.
Рассмотрим работу НЭЭ в режиме инвертирования, так как именно в нем важно обеспечить независимость мощности на шинах накопителя от напряжения на АЭ.
Рассмотрим внешнюю характеристику преобразователя для случая, когда значение активной мощности на шинах переменного напряжения поддерживается близким к постоянному. В начальный момент (при максимальном напряжении АЭ) преобразователь работает с последовательно соединенными мостами. Поддерживание заданного тока разряда обеспечивается за счет регулирования углов управления инвертора (точки 1-2 на рис. 2.10). В момент уменьшения напряжения на АЭ до значения, при котором возможно поддерживание данного значения тока за счет работы одного моста (точка 2), производят переключение мостов из последовательного соединения в параллельное, что соответствует переходу с точки 2 внешней характеристики преобразователей на точку 3. При этом токи, протекающие через преобразовательные мосты, а следовательно, ток и мощность станции на шинах переменного напряжения не изменяются, так как первичные обмотки трансформаторов соединены параллельно. Положение точки 4 определяется процентом недоиспользования АЭ.
Суммарное число мостов станции должно определяться допустимым пределом регулирования углов управления вентилей и задаваемым коэффициентом использования АЭ. Схема (см. рис. 2.9) построена так, что в режиме инвертирования при переключениях станции не отключаются от ЭЭС и коммутационные аппараты не обрывают рабочий постоянный ток. Поэтому их изготовление не вызовет дополнительных трудностей. Кратковременные перегрузки мостов при переключениях не превосходят допустимые для преобразователей передачи постоянного тока.
Описанная схема в сочетании с регулированием углов управления вентилями позволяет поддерживать требуемую активную мощность, выдаваемую станцией, вплоть до полного разряда АЭ без перерыва энергоснабжения. При ее помощи можно обеспечить независимость потребляемой активной мощности от напряжения на АЭ и в режиме его заряда (при работе мостов в режиме выпрямителя), но с отключением станции от ЭЭС на время перекоммутаций.
Другой способ регулирования мощности НЭЭ - подключение АЭ к преобразователю станции по частям. Для этого АЭ необходимо разбить на секции, каждая из которых подключается независимо друг от друга к шинам постоянного напряжения преобразовательного устройства. При этом мощность станции колеблется около заданного среднего значения; полностью заряженные или разряженные секции необходимо отключать от преобразователя перед очередным подключением. Достаточно мелкое дробление АЭ на секции в сочетании с регулированием углов управления преобразователя позволит уменьшить до допустимого уровня неравномерность изменения активной мощности АЭ в течение цикла работы.
Другие известные способы регулирования цепей заряда- разряда конденсаторных батарей (использование трансформаторов с регулированием напряжения под нагрузкой, переключение конденсаторов батареи из последовательного соединения в параллельное и наоборот, подключение преобразователей к сети переменного тока через индуктивно-емкостные статические преобразователи, использование в качестве преобразовательных устройств компенсированных преобразователей с искусственной коммутацией тока вентилей и т. д.) требуют специального рассмотрения.
Таким образом, НЭЭ с устройством управления на базе 12-пульсного преобразователя при применении рассмотренных выше способов будет отвечать всем требованиям, предъявляемым к источникам пиковой мощности в ЭЭС.
Перейдем теперь к рассмотрению возможных типов аккумулирующих устройств для НЭЭ.
Электрохимические накопители энергии. Электрохимические накопители энергии или электрохимические аккумуляторные батареи - один из самых распространенных типов накопителей.
Электрохимическая аккумуляторная батарея (ЭАБ) состоит из многих элементов, соединенных последовательно и параллельно. Заряд ее происходит во внепиковые часы, а разряд -в часы пиков нагрузки. В процессе заряда электроэнергия электрохимическим путем преобразуется в химическую. При разряде накопленная энергия высвобождается в процессе обратной реакции. Проделана большая работа по совершенствованию ЭАБ. Оказалось, что свинцовые аккумуляторы можно применять и в ЭЭС. Однако стоимость таких элементов высока. Новые типы аккумуляторов основаны на использовании химических реакций таких материалов, как цинк, сера, натрий и т. д., имеющихся в достаточном количестве и являющихся сравнительно дешевыми. Испытания хлор-цинковых аккумуляторов, работающих при низких температурах, дают обнадеживающие результаты. Из аккумуляторов, требующих для работы более высоких температур, можно упомянуть натрий-серные и литий-серные. Особенно успешно ведутся лабораторные испытания натрий-серных ЭАБ.
Характеристики перспективных типов аккумуляторов для выравнивания пиков нагрузки приведены в табл. 2.3.
Электрохимические аккумуляторные батареи имеют КПД, достигающий 65-70%. Ожидается, что перспективные аккумуляторы будут иметь срок службы около 20 лет при удельных капиталовложениях в установку порядка 150 долл/кВт и удельной энергоемкости 250 кВт-ч/м3.
Недостатки ЭАБ - ограниченное число зарядно-разрядных циклов (не более 500), малое время хранения энергии и отрицательное экологическое воздействие.
Таблица 2.3


Материал, используемый в качестве катода, анода

Электролит

Температура, °С

Возможная
плотность
энергии,
Вт-ч/кг

Возможная
плотность
мощности,
Вт/кг

Оксид свинца

Цинк - хлор

Водный раствор

Натрий - сера

Литий - сера

Механическим накопителем (МН), или аккумулятором ме­ханической энергии, называется устройство для запасания и хранения кинетической или потенциальной энергии с по­следующей отдачей ее для совершения полезной работы.

Как и для любого вида накопителей энергии (НЭ), харак­терными режимами работы МН являются заряд (накопление) и разряд (отдача энергии). Хранение энергии служит проме­жуточным режимом МН. В зарядном режиме к МН подводится механическая энергия от внешнего источника, причем конк­ретная техническая реализация источника энергии определяется типом МН. При разряде МН основная часть запасенной им энергии передается потребителю. Некоторая часть накопленной энергии расходуется на компенсацию потерь, имеющих место в разрядном режиме, а в большинстве видов МН - и в режимах хранения.

Поскольку в ряде накопительных установок время заряД3 может намного превосходить время разряда (г3»гр), ^ возможно существенное превышение среднеразрядяой мой" ности Р Р над средней мощностью Р3 заряда МН. Таким образом, в МН накапливать энергию допустимо с помощью сравнительно маломощных источников.

Основные разновидности МН подразделяются на статичес­кие, динамические и комбинированные устройства.

Статические МН запасают потенциальную энергию посред­ством упругого изменения формы или объема рабочего тела либо при его перемещении против направления силы тяжести в гравитационном поле. Твердое, жидкостное или газообразное рабочее тело этих МН имеет статическое состояние в режиме хранения энергии, а заряд и разряд НЭ сопровождаются движением рабочего тела.

Динамические МН аккумулируют кинетическую энергию преимущественно во вращающихся массах твердых тел. Усло­вно - к динамическим МН можно отнести также накопительные- устройства ускорителей заряженных элементарных частиц, в которых запасается кинетическая энергия электронов или протонов, циклически движущихся по замкнутым траекториям.

Комбинированные МН запасают одновременно кинетическую и потенциальную энергию. Примером комбинированного МН может служить супермаховик из высокопрочного волокнистого материала, имеющего относительно малый модуль упругости. При вращении данного МН в нем наряду с кинетической энергией запасается потенциальная энергия упругой дефор­мации. При извлечении накопленной энергии из такого МН достигается использование обоих ее видов.

По уровню удельной накопленной энергии, приходящейся на единицу массы или объема аккумулирующего элемента, динамические инерционные МН существенно превосходят не­которые другие разновидности НЭ (например, индуктивные и емкостные накопители). Поэтому МН представляют большой практический интерес для многообразных применений в раз­личных отраслях техники и научных исследований.

Отдельные виды МН нашли к настоящему времени круп­номасштабное применение в электроэнергетике, например гид - Роаккумулирующие установки электрических станций. Зарядно - Разрядный цикл их работы достигает десятков часов.

Для инерционных МН характерны кратковременные раз- Рядные режимы. Отбор энергии от МН сопровождается Уменьшением угловой скорости маховика до допустимого Уровня. В отдельных случаях торможение может происходить вплоть до полной остановки маховика. Возможны «ударные» Разряды, отличающиеся одноразовым или циклическим от­бором запасенной энергии, причем вследствие большого ки­нетического момента и малого времени разряда МН снижение Угловой скорости его ротора относительно невелико, хотя 0тДаваемая мощность может достигать достаточно высоких значений. В таком режиме МН особые требования предъяв­ляются к обеспечению прочности вала. Под воздействием крутящего момента в вале возникают опасные касательные напряжения, ча. сть кинетической энергии ротора переходит в потенциальную энергию упругих деформаций кручения вала. Для преодоления указанных затруднений в отдельных конст­рукциях МН предусматриваются упругие или фрикционные муфты .

Статические МН сохраняют запасенную энергию, находясь в неподвижном состоянии. Носителями потенциальной энергии в них служат упруго деформированные твердые тела или сжатые газы, находящиеся под избыточным давлением, а также массы, поднятые на высоту относительно земной поверхности. Типичными примерами статических МН являются: растянутые или сжатые пружины, резины; газобаллонные аккумуляторы и пневмоаккумуляторы; ударные устройства различных копров, например для забивания свай, использующие энергию масс в поднятом состоянии; водохранилища гидроаккумулирующих электростанций, баки водонапорных установок. Приведем ос­новные энергетические соотношения и характерные параметры некоторых типовых устройств.

Рассмотрим МН с упругими элементами.

Полагаем твердотельную систему линейной, тогда упругий накопительный элемент имеет постоянную жесткость (или упругость) N = Const. Действующая на него сила F =Nx пропор­циональна линейной деформации х. Совершенная при заряде МН элементарная работа dW =Fdx . Полная запасенная энергия

W = J Fdx= J Nxdx = NAh2/2-FaAh/2, Oo

Где Ah - результирующая деформация, ограниченная, например, Допустимым напряжением ар материала; Fn = NAh -приложен­ная сила.

Оценим удельную энергию Wya = Wj М, приходящуюся на единицу массы M = yV =ySh пружины или стержня объемом V и сечением S , материал которых имеет плотность у и работа­ет на разрыв в пределах закона Гука a = xfE , причем X *=xfh - относительная деформация, Е -модуль упругости (Юнга), G^Gp. Введя da = Edx можем записать DW =Fhdx *=Fhdo и dWya = dW /ySh = Fda /ySE , откуда при C = F /S находим

Wya=](aljE)da = a2J(2jE). О

Для стальных пружин примем с„ = 8 108 Н/м " Е= 2 ,1-1011 Н/м2, у = 7800 кг/м3, тогда Wya ^200 Дж /кг. Ана­ Логичный расчет для технической резины дает ^уд^350 Дж/кг, однако из-за гистерезисного характера зависимости F = F (X ) В цикле «заряд-разряд» возникающие потери и нагрев приводят К постепенному старению (разрушению) резины, нестабильности й ухудшению ее упругих свойств.

Газоаккумулирующая система находится в механически не­равновесном состоянии по отношению к окружающей среде: при равенстве температур системы и окружающей среды (Т=Т0С) давление системы р>р0,с, поэтому система может совершать работу. Запас упругой энергии сжатого в баллоне объемом V газа составляет

W =P{ vdp=v{p2-pi).. (4.1)

На единицу массы М любого сжатого газа согласно (4.1) приходится удельная энергия

Wya=W/M=V(p2-Pl)IM=Aply. (4.2)

На основании (4.2) при К=1м3 значение W - WysM чис­ленно равно перепаду давления Ар=р1-р1. Например, если А/? = 250 105 Па (начальное давление р! = Ю5Па), то ИЛ=25-106 Дж независимо от химического состава газа. Мак­симальное значение Wya при расширении сжатого газа до нулевого давления при данной температуре согласно уравнению Менделеева - Клапейрона PV - MvRyT составляет

Wya =WlM=RyTI», (4.3)

Где ц = М/Мц - молярная масса (кг/кмоль); Ry& ~8,314 кДж/(кмоль К) - универсальная газовая постоянная при Тх273 К; /?«105Па; Мм - количество киломолей в газе массой М.

Из (4.3) видно, что наиболее эффективно применение в МН легких газов. Для самого легкого газа - водорода (ц = 2 кг/кмоль) при Г=300 К удельная энергия ~1250 кДж/кг (или 1250 Дж/г). В (4.3) давление в явном виде не входит, так как Wya определяется по (4.2) отношением избыточного давления газа к его плотности. Последняя при повышении давления и Г= const возрастает по линейному закону (в изотермическом процессе PV = Const). Следует заме­тить, что целесообразные для эффективного применения рас­сматриваемых МН высокие давления обусловливают по сооб­ражениям прочности существенную массу газовых баллонов, с учетом которой значение Wya установки в целом может снижаться почти на порядок по сравнению с fVya из (4.2), (4.3). Оценку прочности баллонов можно провести, пользуясь Расчетными соотношениями § 4.5.7.

Рассмотрим гравитационные накопители энергии.

Гравистатическая энергия притяжения Земли (на уровне оря) оценивается достаточно высоким показателем "уд = 61,6 МДж/кг, который характеризует работу, необходи­мую для равномерного перемещения тела массой Мх = Кг с земной поверхности в космическое пространство (для срав­нения укажем, что это значение PVya приблизительно в раза больше химической энергии 1 кг керосина). При подъеме груза массой М на высоту h = x 2 - xl запасенная потенциальная энергия

W =jgMdx=gMh, (4.4)

Где M = const, g=9,8l м/с2. Согласно (4.4) удельная энергия Wya =Wj M =gh зависит только от высоты h . Запасенная энергия высвобождается при падении груза и совершении соответствующей полезной работы в результате перехода потенциальной энергии в кинетическую. Наибольшую удельную кинетическую энергию в природе при падении могут развивать метеориты, для которых Wya^60 МДж/кг (без учета затрат энергии на трение в атмосфере).

Непосредственное использование гравистатических сил, со - здабаемых природными массами, практически невозможно. Однако, перекачивая воду в поднятые искусственные водо­хранилища или из подземных водохранилищ на поверхность, можно накопить достаточно большое количество потенциаль­ной энергии для крупномасштабных применений в электроэнер­гетических системах. Если разность уровней h = 200 м, то в расчете на массу воды М=103кг запасенная энергия по (4.4) равна И>"=1962 кДж, удельная энергия Wya = WjM = 1,962 кДж/кг.

Рассмотрим инерционные кинетические МН.

Кинетическую энергию в принципе можно запасать при любом движении массы. Для равномерного поступательного движения тела массой М со скоростью v кинетическая энергия W =Mv 2 / 2. Удельная энергия Wya =W / M = v 2 j 2 зависит (квад­ратично) только от линейной скорости тела. Тело, движущееся с первой космической скоростью км/с, имеет удельную

Энергию Wyax32 МДж/кг.

Для разнообразных энергетических и транспортных примене­ний рациональны МН вращательного движения - инерционные МН (маховики). Запасенная кинетическая энергия W=J& / ~ определяется квадратом угловой скорости Q = 2nn (П - частота вращения) и моментом инерции J маховика относительно оси вращения. Если дисковый маховик имеет радиус г и массу М = yV (V -объем, у - плотность материала), т°

J^Mr2/2 = yVr2j2 и W=n2Mr2n2 = n2yVr2n2. Соответствующая удельная энергия (на единицу М или V) составляет FV /M =n *r 2n 2 , Дж/кг и lV 0ya =W /V =n 2yr 2n 2 , Дж/м3. Значения Q и п при заданном размере г ограничиваются линейной окружной скоростью v = Q .r = 2mr , связанной с до­пустимым разрывающим напряжением материала ар. Известно, что напряжение а в дисковом или цилиндрическом роторе МН зависит от v2. В зависимости от геометрической формы металлических маховиков для них характерны допустимые предельные скорости на периферии приблизительно от 200 до 500 м/с.

Накопленная энергия, в частности для тонкого ободкового маховика, W =Mv /2 (М -масса вращающегося кольца). Удельная энергия Wya =W /M = v 2 /2 не зависит от размеров кольца и определяется соотношением параметров Ор/у его материала (см. § 4.5.1, где показано, что v 2 = opj У). Следует отметить, что аналогичная закономерность для Wya~avjу имеет место также в индуктивных накопителях энергии (см. гл. 2), хотя они существенно отличаются от МН по физической природе. В общем случае при изготовлении накопительных элементов МН необходимо применять материалы с повышен­ными значениями Gp/y> 105 Дж/кг. Наиболее подходящими материалами являются высокопрочные легированные стали, титановые сплавы, а также легкие алюминиевые сплавы (типа «дюраль») и магниевые сплавы (типа «электрон»). Применяя металлические материалы, можно получить удельную энергию МН до Wm = 200-300 к Дж/кг .

Предназначенные длй создания маховиков с особо боль­шими удельными энергиями (супермаховиков) тонковолокнис­тые материалы теоретически могут обеспечить следующие уровни показателя Wya: стеклянные нити-650 кДж/кг, квар­цевые нити - 5000 кДж/кг, углеродные волокна (со структурой алмаза)-15000 кДж/кг . Нити (или выполненные из них ленты) и клеющие смолы образуют композитную конструкцию, прочность которой ниже, чем у исходных волокон. С учетом элементов крепления в реальных супер - маховиках практически достигаются значения Жуд меньше Указанных, но все же относительно более высокие, чем в других Разновидностях МН. Супермаховики допускают окружные скорости до v «1000 м/с. Техническая реализация таких Устройств требует обеспечения специальных условий. Например, Необходима установка маховика в вакуумированном кожухе, так как указанные значения v соответствуют сверхзвуковым скоростям в воздухе (число Маха Ма>1), которые в общем СлУчае могут вызывать целый ряд недопустимых эффектов: Появление скачков уплотнения воздуха и ударных волн, резкое Повышение аэродинамического сопротивления и температуры.

А -масса на жесткой струне; б -упругий обод

Многослойные волокнистые супермаховики обладают достаточ­но высокой надежностью и безопаснее в эксплуатации, чем сплошные маховики. При недопустимых нагрузках, обуслов­ленных инерционными силами, разрушаются" только наиболее напряженные наружные слои волоконной композитной конст­рукции супермаховика, тогда как разрушение массивного маховика сопровождается разлетом его разорвавшихся частей.

Сочетание свойств статического и динамического МН имеет место в различных устройствах. Простейшим из них является колеблющийся маятник. Циклический процесс взаимного преоб­разования потенциальной энергии в кинетическую может под­держиваться достаточно длительно, если компенсировать по­тери в маятниковом механизме.

Рассмотрим иллюстративные примеры МН, запасающих при заряде одновременно кинетическую и потенциальную энергию . Они демонстрируют принципиальные возмож­ности совместного практического использования обоих видов накопленной механической энергии. На рис. 4.1, а показан груз массой М, вращающийся вокруг центра О на абсолютно жесткой струне длиной /, отклоненной от вертикального положения на угол ср. Линейная скорость v соответствует вращательному движению М по окружности радиуса г. Потен­циальная энергия груза Wn =gMh обусловлена его подъемом на высоту h в результате отклонения. Кинетическая энергия груза составляет 1FK = 0,5 Mv 2 . На груз действует сила F = F„ + Fr. Ее инерционная компонента равна FK = Mv lr> значение гравитационнои компоненты F T = gM . Поскольку F„/Fr = r2/rg = tg(D, постольку Wn /WK = 2h /rtg ^>. Если Учест^! что A = /(l - coscp) и r = /sincp, то /г/г = (1 - coscp)/sinср. Таким образом, W „l lFK = 2coscp/(l +cos(p), и в случае ср->0 получаем Wn/WK->1. Следовательно, при малых углах ср запасенная энергия fV=JVK+Wn может распределяться на равные част (WЗначение Wn можно увеличить, если закрепить груз на упругом подвесе (прутке или струне).

Другим примером совместного накопления W и WK служит вращающийся тонкоободковый маховик (рис. 4.1, б), облада­вший упругостью (жесткостью) N. Натяжение в ободе ^р = NAI пропорционально упругому удлинению А/=2л(г -г0), вызванному инерционными силами AFr = AMv 2 /г, распределен­Ными по окружности обода радиусом г. Равновесие элемента обода массой 2ДМ=2(Л//2л;)Д(р определяется соотношением 2A/v = 2A/7(()sinAcp^Ai^Acp, откуда 0,5 Mv 2 = 2K 2 (r - r 0 )N . Сле­довательно, кинетическая энергия обода lVK = 2n 2 (r - r 0 )N . По­скольку запасенная потенциальная энергия }

Рассказать друзьям