Литотерпия - наука о камнях. Геммология

💖 Нравится? Поделись с друзьями ссылкой

Описание:

В ювелирном бизнесе геммолог — это «фигура номер один». Профессиональный геммолог легко может определить вид драгоценного камня и его происхождение, отличить синтетические аналоги и имитации драгоценных камней от природных драгоценных камней.

Геммология - наука, которая изучает химический состав драгоценных камней, их физические свойства, а также качество ювелирных изделий. Соответственно, геммолог занимается определением, оценкой и сертификацией драгоценных камней. Профессиональный геммолог легко может определить вид драгоценного камня и его происхождение, отличить синтетические аналоги и имитации драгоценных камней от природных драгоценных камней. Для этого геммолог должен знать методы облагораживания драгоценных и поделочных камней. Основным его инструментом являются его глаза, лупа, микроскоп, рефрактометр и спектроскоп. Это достаточно редкая, а потому востребованная профессия, как у нас в стране, так и за рубежом.

Профессия геммолога достаточно сложная, но вместе с этим весьма интересная и необычная, ведь любоваться красотой и неповторимостью бриллиантов, при этом давая грамотную оценку их достоинствам, может только геммолог

Интересные факты

Цены на бриллианты зависят от их качественных параметров, и разница между двумя бриллиантами одинаковой массы может быть очень внушительной. Оценка бриллиантов складывается из совокупности четырех Си - Carat, Color, Clarity, Cut, то есть параметров веса, цвета, прозрачности и качества огранки. Классификация бриллиантов, основанная на этих характеристиках, носит название «4С».

Carat (вес). Вес бриллианта измеряется в каратах. 1 карат равен 0,2 граммам. Различают три весовые группы бриллиантов: мелкие, средние и крупные. Вес мелких камней - до 0,29 карата, средние бриллианты варьируют в промежутке между 0.3 и 0.99. Крупными считаются камни более 1 карата.

Color (цвет). Различают группу бриллиантов традиционного цвета (или Кейп) и бриллианты фантазийных цветов. Первая группа включает в себя бесцветные бриллианты и всю цветовую шкалу желтых оттенков. Причем, самыми ценными считаются так называемые «бриллианты чистой воды», то есть бесцветные, а наименее ценными являются камни сильно выраженного желтого цвета. Исключение составляют редкие золотые и черные бриллианты. Вторая группа включает в себя зелёные, голубые, розовые, красные, синие бриллианты и т.д. Фантазийный цвет у бриллианта может быть природным - в результате минеральных примесей в процессе образования:

розовый цвет - примесь марганца,

синий цвет - наличие бора,

чёрный оттенок - это графит,

голубой цвет - примесь алюминия,

зелёный оттенок - наличие хрома,

жёлтый цвет - это литий,

коричневый оттенок - частицы железа.

Clarity (прозрачность, чистота). Чистота является самым существенным параметром качества бриллиантов и выражается в наличии/отсутствии дефектов и посторонних включений в структуре камня. При этом дефекты могут быть как внутренними, так и поверхностными, то есть от которых можно избавиться с помощью шлифовки. Чтобы определить число и размер включений обычно используют 10-кратную лупу. Для оценки прозрачности бриллиантов применяют российскую систему ТУ 25-07.1319-77 и международную систему GIA.

Cut (огранка). В оценке огранки основополагающим принципом является не ее форма (круглая, принцесса, груша, сердце, изумруд, ашер, маркиз и т.д.), а качество исполнения. От того, насколько геометрически точно и пропорционально выполнено гранение бриллианта, зависит степень его блеска и игры света. Идеальная огранка обозначается буквой А, далее в процессе убывания качества.

Список камней, с которыми работают геммологи

В настоящее время в природе открыто более 4000 минералов. Из них в ювелирном деле применяется менее 350. Специалист-геммолог в своей работе сталкивается со следующими материалами, как в ограненном, так и необработанном виде:

1. Камни ограняемые распространенные: алмаз (бриллиант), изумруд (берилл зеленого цвета), рубин и сапфир (корунд разных цветов, прозрачный или звездчатый), шпинель, благородный опал, огненный опал, аквамарин (берилл голубой), гелиодор (берилл желтый), топаз, танзанит (цоизит синий), турмалин (группа минералов), хризолит (оливин, перидот), циркон, гранаты (группа минералов), аметист (кварц фиолетовый), цитрин (кварц желтый), раухтопаз (кварц коричневый), морион (кварц черный), горный хрусталь (кварц бесцветный).

2. Камни органического происхождения: жемчуг, янтарь, коралл, гагат.

3. Камни ограняемые относительно редкие: александрит (хризоберилл с эффектом изменения окраски), аксинит, актинолит, андалузит, апатит, воробьевит (берилл розовый), везувиан, гидденит, данбурит, датолит, диопсид, кордиерит, кианит, корнерупин, кунцит, скаполит, сфен, хризоберилл, хромдиопсид, энстатит, эпидот, эвклаз.

4. Камни поделочные: авантюрин, агат, амазонит, бирюза, гелиотроп, гематит, жадеит, карнеол, кварц, кошачий глаз, лабрадорит, лазурит, лунный камень, малахит, молдавит, нефрит, обсидиан, окаменелое дерево, оникс, опал, перламутр, полевые шпаты, празем, родонит, сердолик, серпентин (змеевик), слоновая кость, соколиный глаз, солнечный камень, тигровый глаз, уваровит, халцедон, хризопраз, чароит, яшма.

5. Синтетические аналоги природных камней: алмаз, изумруд, рубин, сапфир, александрит, шпинель, благородный опал, аметист, цитрин, горный хрусталь, рутил, шеелит, бирюза, малахит, коралл, а также культивированный жемчуг.

6. Имитации: стекло, пластик, эпоксидная смола, бакелит, фианит, иттрий-алюминиевый гранат (ИАГ), галлий-гадолиниевый гранат (ГГГ), ниобат лития, титанат стронция, алюминат иттрия, цинкит.

7. Облагороженные упомянутые выше природные камни и синтетические материалы.

К коллекционным относят малораспространенные камни, не всегда пригодные для использования в ювелирном деле. Их названия ни о чем не говорят неспециалисту, но геммолог нередко с ними сталкивается - это, например, эвдиалит, калифорнит, бразилианит.

Место работы

Геммологи заняты в сфере производства и торговли камнями и ювелирными изделиями.

При подготовке использован материал ПрофГид: список профессий и их описание

Обязанности:

· сортировка камней (по размеру, форме и качеству);

· подбор комплектов камней;

· подбор камней для ремонта изделий;

· оформление накладных;

· расчет цены поступающих изделий;

· оценка камней в изделиях (характеристики);

· контроль текущих остатков камней;

· контроль сроков поставки камней поставщиками;

· анализ информации по ценам поставщиков;

· внесение предложений о закупках;

· учет камней по группам и размерам;

· оформление геммологических описаний на поступившие изделия;

· сверка с производством.

Требования:

Важные качества

· острое зрение

· хорошее цветовосприятие

· усидчивость

· высокая концентрация внимания

· стрессоустойчивость

· ответственность

Образование

Чтобы стать геммологом, нужно поступить на геологический или минералогический факультет и на пятом курсе выбрать специализацию «Геммология» или соответствующую кафедру. Различают геммологов с цветным и белым дипломом. Первый дается специалисту по драгоценным камням, второй — по бриллиантам.

Геммологией называют науку о поделочных и драгоценных камнях (самоцветах). В её рамках исследуют их оптические и физические свойства, химический состав происхождение, технологии обработки, художественную и декоративную ценность. То есть среди геологических наук данная дисциплина несет в основном прикладное значение. По предмету и методам она очень близка к минералогии, частью которой и являлась изначально.

История

Геммология появилась вместе с минералогией как ее не обособленное направление. Более того, первые минералогические работы были в основном о драгоценных камнях, их особенностях и способах диагностики. В древнем Риме такими исследованиями занимался Плиний Старший, а в средневековом исламском мире - Бируни. Развитие минералогии и геммологии происходило совместно с накоплением знаний о минералах до конца XVI в. в рамках единого геолого-минералогического направления естествознания, когда оно начало разделяться.
Первая книга о драгоценных камнях была написана к 1652 г. Томасом Николсом.

В России геммологические работы появились только в XIX веке. Такими исследованиями занимались В. М. Севергин и М. И. Пыляев.

В 1837 г. Марком Годэном путем совместного плавления хромата калия и алюмокалиевых квасцов были созданы кристаллы рубина. Это первый случай искусственного выращивания драгоценных минералов.

Современная геммология сформировалась к началу XX в., когда появились точные методы изучения минерального вещества.

Так, В 1866 г. Артур Черч использовал первый спектроскоп для изучения камней, а в 1902 г. Гербертом Смитом был создан специализированный инструмент для измерения показателя преломления кристаллов - рефрактометр.
В 1908 г. Образовалась Геммологическая ассоциация Великобритании. Получивший в 1929 г. ее диплом Роберт Шипли в 1931 г. основал Геммологический институт Америки.

В середине 30 гг. Андерсон и Пейн создали несколько устойчивых, безопасных, тяжелых жидкостей для определения удельного веса минералов.

После Второй мировой войны Р. Вебстер разработал технологию идентификации драгоценных минералов с применением ультрафиолетовых лучей.

В 1959 г. Л.Ч. Трампер создал прибор для диагностики драгоценных камней по отражательной способности (рефлектометр).

В 70 гг. такие приборы получили большое распространение, как и измерители теплопроводности. В 1986 г. представили первую коммерческую компьютерную программу для идентификации драгоценных минералов. Спустя 10 лет для отличия синтетических алмазов от естественных фирмой «Де Бирс» были созданы два прибора.

Современная наука

Геммология ближе всего связана с такими геологическими науками как минералогия, кристаллография и петрография. Это объясняется тем, что большая часть драгоценных и поделочных камней является минералами.
Сейчас данная дисциплина имеет несколько направлений: диагностическое (определение вида камня и отличие естественных и синтетических минералов), генетическое (выяснение происхождения самоцветов), описательное (изучение особенностей камней), экспериментальное (изучение возможностей использования в ювелирной сфере не применяемых здесь камней), региональное (исследование самоцветов определенной территории), эстетическое (изменение внешних свойств камней: огранка, изменение цвета и т. д.), прикладное и технико-экономическое (разработка новых методов облагораживания и обработки самоцветов и оптимизация существующих технологий), оценочное (определение ценности камней на основе их происхождения, свойств, степени обработки и т. д.), глиптика (особый способ внешней обработки самоцветов, состоящий в нанесении на поверхность объемного изображения).

Следовательно, геммология является в основном прикладной наукой. Даже исследовательские задачи направлены на использование полученной информации или разработок в производстве и торговле камнями. Так, определение минерального вида драгоценного камня и его происхождения, а также отличие естественных самоцветов от искусственных аналогов необходимо для оценки камней при торговле. Разработка методов облагораживания и обработки самоцветов требуется для ювелирного производства.

В странах, где разрешена торговля камнями, существуют государственные геммологические лаборатории. К тому же бывают и частные. Они встречаются в государствах, где идет торговля бриллиантами. Здесь геммологи занимаются оценкой камней, выступая третьей стороной при сделках.

Предмет, задачи и методы геммологии

Предметом геммологии являются поделочные и драгоценные камни. Нужно отметить, что большая часть из них относится к минералам. Так, примерно треть всех известных минералов применяется в ювелирном деле. Помимо минералов, геммология изучает не относящиеся к ним тела, такие как некристаллические образования, органогенные продукты, синтетические аналоги минералов.

К задачам данной науки относят разработку критериев диагностики синтетических и природных самоцветов, расширение возможностей применения известных камней и исследование сфер использования не вовлеченных в ювелирную сферу видов, разработку методов синтеза искусственных самоцветов и совершенствование применяемых технологий.

Существует несколько перспективных задач: накопление диагностических данных для более точного и достоверного определения камней, исследование окраски самоцветов с применением компьютерного моделирования, изучение оптических свойств алмазов и оптимизация их огранки, исследование методов облагораживания камней и создание технологий его распознавания, изучение отличий искусственных самоцветов от естественных аналогов и их специфических свойств.

Данная дисциплина применяет методы петрографии, химии, геологии, физики, биологии. Большое значение в геммологии имеют оптические методы. Их преимущество состоит в том, что такие технологии позволяют диагностировать камни, не оказывая на них физическое воздействие. Это особо актуально, учитывая, что нередко геммологам приходится определять обработанные камни, заметное воздействие на которые недопустимо. К оптическим методам относят цветовую дисперсию, измерение показателей преломления света, интенсивность и характер люминесценции и др. Для отличия естественных камней от искусственных обычно требуется определение состава. Для этого применяют электронный парамагнитный резонанс, ультрафиолетовую и инфракрасную спектроскопию, анализируют состав и фазовые соотношения газово-жидких и твердых включений. Облагораживание осуществляют путем усиления или изменения окраски. Для этого используют методы ионизирующего облучения, отжига (термического воздействия), пропитывания химически активными веществами.

То есть по применяемым методам геммология также близка к минералогии. Отличие состоит в том, что геммологам весьма часто приходится исследовать обработанные драгоценные камни, заметное воздействие на которые недопустимо, следовательно, оптические методы диагностики распространены более обширно.

Образование и работа гемолога

Так как геммология является узкой специальностью, обучение данной профессии производят в рамках геологии, геохимии, кристаллофизики, технологии обработки драгоценных камней и металлов. И если первые две специальности весьма распространены, то прочие встречаются редко. Кроме того, существуют курсы по геммологии вне программы высшего образования.

В России геммологи востребованы мало. Это объясняется тем, что здесь не развита практика их участия в сделках по торговле самоцветами в качестве третьей стороны (оценщиков). Более того, многие занятые в данной сфере люди даже не знают о существовании таких специалистов. Поэтому в России в основном геммологи работают на производстве ювелирных изделий, тогда как в других странах они активно заняты в торговле камнями и товарами из них.

Заключение

Геммология появилась вместе с минералогией как не обособленный раздел и в первые времена даже составляла основу данной науки. Современный вид она обрела к началу XX века. В настоящее время геммология является прикладной дисциплиной. Занимается диагностикой, преобразованием и синтезом драгоценных и поделочных камней. Обучение чаще всего производится на специальностях геологического цикла, но ввиду малой востребованности специалисты в данной сфере в России работают преимущественно на производстве ювелирных изделий.

Камень — это всякая твердая нековкая составная часть земной коры в виде сплошной массы или отдельных кусков. Ювелир понимает под этим словом драгоценные камни, строитель — материалы, с помощью которых мостят улицы и возводят дома. Геологи же, занимающиеся наукой о Земле, называют объекты своего изучения не «камнями», а горными породами и минералами.
Горная порода, или, как чаще говорят, порода, представляет собой сочетание (агрегат) минералов естественного (природного) происхождения. Обычно породы слагают более или менее значительные площади. Песок и суглинок тоже причисляют к горным (точнее — рыхлым осадочным) породам. Наука, изучающая горные породы, носит название петрографии.
Минерал — это внутренне однородный твердый компонент земной коры, образовавшийся естественным путем. С началом эры космических полетов минералами стали называть и твердые составные части горных пород Луны. Большинство минералов выделяется в виде кристаллов, имеющих определенные формы. Слово «минерал» происходит от латинского слова mina («мина») — шахта. Наука о минералах именуется минералогией.
Кристалл — это однородное по составу тело строго геометрической формы с закономерным внутренним строением — кристаллической решеткой. Структура кристаллической решетки определяет разнообразие физических свойств кристаллов, а тем самым и минералов. Раздел науки, изучающий кристаллы, называется кристаллографией.
Драгоценный камень — понятие, не имеющее единого определения. Чаще всего к драгоценным камням относят красивые и редкие минералы (в некоторых случаях и минеральные агрегаты), обладающие достаточно высокой твердостью, а потому весьма стойкие к истиранию, иными словами, почти не подвластные времени. Но, разумеется, представление о красоте камня с течением времени менялось, вот почему отдельные камни, ранее слывшие драгоценными, давно забыты, тогда как другие минералы ныне, наоборот, возведены в ранг драгоценных камней. Понятие полудрагоценный камень, как прежде называли не очень твердые ювелирные и поделочные камни, еще менее четко и на сегодняшний день не вполне правомочно. Ювелирноподелочный камень — собирательное понятие, охватывающее все камни, используемые в качестве украшений (в том числе и в декоративных целях). В более узком смысле слова поделочными камнями называют относительно недорогие самоцветы, которые тем самым как бы противопоставляются «настоящим» драгоценным камням. Наука о драгоценных камнях носит название геммологии.
Руда в общем случае представляет собой минеральную смесь, с промышленным содержанием металлов. В последнее время рудами иногда называют и некоторые виды неметаллического минерального сырья, обладающие полезными свойствами. Поскольку практическая ценность руды (иначе говоря, кондиционность, пригодность для разработки) зависит от факторов, которые с течением времени могут изменяться (технические возможности добычи и обогащения, экономическая конъюнктура, транспортные условия), понятие «руда» применимо не только к определенным минералам или горным породам.

Минералы

В настоящее время известно около 3000 минералов, и ежегодно ученые открывают все новые и новые их виды. Нр лишь около 100 минералов имеют сравнительно большое практическое значение: одни — в силу их широкой распространенности, другие — благодаря особым, ценным для человека свойствам. И только четверть из них играют существенную роль в составе горных пород.
Некоторые минералы были известны еще в Древней Греции. Однако научный способ их познания утвердился гораздо позже. Отцом минералогии по праву считают немецкого ученого Георга Агрйколу (1494—1555). Значительный вклад в развитие учения о минералах внесли также профессор минералогии Фрейбергской горной академии Абраам Готлоб Вернер (1750—1817), который разработал классификацию горных пород, и профессор химии из Берлина Мартин Генрих Клапрот (1743—1817).
Возникновение названий минералов не подчиняется какой-либо единой системе: одни из них заимствованы из жаргона горняков или народной речи, другие были придуманы специально. Роль немецких ученых в развитии минералогии нашла отражение в значительном распространении немецких терминов, которые получили международное признание. С течением времени многие минералы получали новые названия, но при этом их старые наименования нередко тоже не выходили из употребления. Поэтому сейчас один и тот же минерал может иметь несколько наименований. Особенно запутана номенклатура драгоценных и поделочных камней: их многочисленные наименования необозримы и часто могут ввести в заблуждение. И хотя существуют международные соглашения о единой номенклатуре драгоценных камней, практика показывает, что еще и сегодня не положен конец произвольному присвоению им самых разных торговых наименований.

Происхождение и строение

Минералы могут образовываться по-разному. Такие широко известные минералы, как полевой шпат, кварц и слюда, кристаллизуются из огненножидких расплавов и газов преимущественно в недрах Земли, реже — из лав, излившихся на земную поверхность. Некоторые минералы образуются из водных растворов или возникают при участии организмов, некоторые — путем перекристаллизации уже существующих минералов под воздействием больших давлений и высоких температур.
Многие минералы часто встречаются в определенных сообществах, или ассоциациях, так называемых парагенезисах (например, полевой шпат и кварц), но бывают-- и исключающие друг друга минералы (например, полевой шпат и каменная соль).
Большинство минералов имеет определенный химический состав. Входящие в них примеси хотя и способны влиять на физические свойства минералов или даже изменять их, но в химических формулах обычно не упоминаются. При определении минералов весьма существенную роль играет форма их кристаллов. И хотя в образцах она не всегда идеально выражена, а чаще просто искажена, все же в большинстве случаев удается различить какие-либо признаки кристаллического строения — грани, штриховку или постоянные углы между гранями. Типичные формы кристаллов объединены в семь кристаллографических систем, называемых сингониями. Различие между ними проводится по кристаллографическим осям и углам, под которыми эти оси пересекаются (см. таблицу на стр. 11).
Существуют следующие кристаллографические сингонии (системы): кубическая (правильная), тетрагональная (квадратная), гексагональная (шестиугольная), тригоналъная (ромбоэдрическая, или треугольная), ромбическая (иногда называемая орторомбической), моноклинная и триклинная.

В кубической сингонии все три оси имеют одинаковую длину и ориентированы взаимно перпендикулярно. В тетрагональной сингонии все три оси расположены взаимно перпендикулярно, причем две из них имеют одинаковую длину и лежат в одной плоскости, а третья отличается от них по длине. В гексагональной сингонии имеются четыре оси; три из них расположены в одной плоскости, обладают одинаковой дли-

ной и пересекаются под углами 120° (или 60°), четвертая же ось (другой длины) ориентирована перпендикулярно трем остальным. Тригональная сингония имеет те же оси и углы, что и гексагональная. Поэтому эти обе сингонии часто объединяют в одну — гексагональную. Различие между ними проявляется в элементах симметрии. В гексагональной сингонии поперечное сечение призматической основной формы шести-
угольное, в тригональной — треугольное. При стесывании углов треугольника получается шестисторонняя гексагональная форма. В ромбической сингонии все оси взаимно перпендикулярны, но имеют разную длину. В моноклинной сингонии из трех осей разной длины две взаимно перпендикулярны, а третья расположена под острым углом к ним. В триклинной сингонии все три оси различны по длине и наклонены по отношению друг к другу.
Конечно, большинство окристаллизованных минералов не встречается в виде правильно образованных кристаллов; чаще их формы искажены и для них характерно преимущественное развитие одних граней за счет других. Однако углы между соответствующими гранями всегда остаются одинаковыми. Некоторые минеральные вещества кристаллизуются в разных сингониях. В таких случаях говорят о полиморфизме и о полиморфных модификациях. Например, карбонат кальция СаСОэ может образовывать в различных условиях две модификации — тригональный кальцит и ромбический арагонит.
Факторами, определяющими форму минерала, являются строение его кристаллической решетки и упаковка атомов, ионов или молекул. Если при одинаковом химическом составе сами атомы всегда идентичны, то их взаимное расположение может быть весьма различным. Структура кристаллической решетки определяет не только форму кристаллов, но и их спайность. Так, например, при спиральном расположении частиц в решетке, не допускающем проведения в ней плоских поверхностей раздела, кристалл не раскалывается по спайности (то есть спайность у него отсутствует).
Все кристаллические минералы имеют решетку, и только внутреннее строение аморфных веществ лишено закономерной упорядоченности.
В отдельных случаях в результате выполнения полостей, оставшихся на месте растворенных и вынесенных кристаллов, замещения или обрастания (крустификации) других образований минералы могут появляться в нетипичных для них кристаллических формах — в виде так называемых псевдоморфоз, или ложных кристаллов.
Если минералы одинакового строения различаются лишь незначительными вариациями в химическом составе, изменениями окраски или какими-нибудь другими особенностями, говорят об их разновидностях. Среди драгоценных и поделочных камней разновидности играют значительную роль.
Огранкой или огранением называют комбинацию граней, наиболее характерную для кристаллов того или иного минерала (например, ромбододекаэдр у граната), габитусом — облик кристаллов и их агрегатов (например, столбчатый, таблитчатый или игольчатый). Бесструктурные на вид минеральные массы, сложенные кристаллическими зернами, которые имеют решетку, но вследствие затрудненного роста лишены правильных внешних ограничений, называют сливными, сплошными или массивными зернистыми агрегатами.
Подчас два или несколько кристаллов одного минерала срастаются между собой таким образом, что проявляют закономерную взаимную ориентировку. Подобные

образования называют двойниками, тройниками и сложными (многократными, множественными) двойниками. Наряду с двойниками срастания, в которых составляющие кристаллы лишь соприкасаются между собой (по плоскости срастания), существуют еще двойники прорастания с взаимным проникновением составляющих их кристаллов друг в друга. Двойниковые сростки распознаются по часто наблюдаемым у них входящим углам, которые у монокристаллов никогда не появляются.
Крупные и хорошо образованные правильные кристаллы минералов красивой формы встречаются в горных породах, где они нарастают на внутренних стенках округлых замкнутых полостей. Такие заполненные минеральным веществом пустоты называют жеодами, а наросшие на их стенках или на стенках трещин группы красивых кристаллов — друзами. Типичные минералы друз — кварц, кальцит и флюорит.

Коллекционеры называют свободные (или отпрепарированные) хорошо образованные минеральные группы штуфами. Но по большей части кристаллические индивиды бывают столь мелкими, что распознаются лишь под лупой или даже под микроскопом. Такие кристаллические (зернистые) агрегаты называют плотными.
Особый интерес для коллекционера представляют так называемые каменные розы — листоватые сростки, возникшие вследствие смещения индивидов, первоначально нараставших друг на друга в параллельном положении. Подобные груболистоватые формы развития типа «розы» можно встретить у гипса, барита и гематита (железной слюдки).
Гораздо чаще встречаются различные виды минеральных сростков (минеральные агрегаты или минеральные скопления). В зависимости от минерального состава и от условий, в которых протекал процесс роста, возникали шестоватые, радиально-ори- ентированные (лучистые, волокнистые, игольчатые и др.), листоватые или зернистые агрегаты. Радиальные агрегаты проявляют тенденцию к образованию сферических форм, которые в тех случаях, когда они имеют гладкую и блестящую поверхность, называют стеклянной головой (правильнее было бы называть «лысой»). Кон- центрически-скорлуповатые образования, такие, как арагонитовый гороховый камень, носят название оолитов (см. стр. 16).

Физические свойства

У минералов форма кристаллов в большинстве случаев развита не столь идеально, чтобы по ней можно было безошибочно отличить один минерал от другого, поэтому здесь нам помогают такие физические свойства минералов, как цвет, блеск, спайность, излом, твердость и плотность.
Однако любителю следует помнить, что не все встреченные им минералы удается диагностировать, не прибегнув к специальным химическим и физическим исследованиям.

Цвет и черта

Цвет минерала лишь в редких случаях может служить характерным диагностическим признаком, как, например, у синего азурита, зеленого малахита, желтой серы или красной киновари. Большинство же минеральных видов может иметь различную

окраску. Например, флюорит бывает бесцветным, желтым, коричневым, розовым, зеленым, синим, фиолетовым и даже почти черным. Химические и механические примеси способны изменить собственную окраску минерала и позволяют выделять его разновидности.
Кроме того, цветовые оттенки минералов могут меняться под воздействием высоких температур, ультрафиолетового и радиоактивного облучения, а также просто выцветать на солнечном свету. В ювелирном деле заметную роль играет искусственное окрашивание драгоценных и поделочных камней.
Более надежным диагностическим признаком минералов, чем цвет, является так называемый цвет черты (или, как часто говорят, просто черта). Цвет черты выявляется, если уголком испытуемого образца потереть пластинку неглазурованного фарфора — бисквита. Если минерал окажется твердым, рекомендуется прежде соскрести напильником немного порошка, а потом уже растереть его на пластинке.
Черта отражает собственный цвет минерала, ее окраска более постоянна и в меньшей мере зависит от цветовых разновидностей минерала. Так, цвет черты черного железного блеска (разновидности гематита) — вишнево-красный, золотисто-желтого пирита — черный с зеленоватым оттенком, а флюорита — независимо от его желтой, зеленой или фиолетовой окраски — всегда белый.

Блеск, прозрачность

Блеск минерала обусловлен тем, как свет отражается от его поверхности. В минералогии различают стеклянный, шелковистый, перламутровый, алмазный, жирный, смоляной, восковой, металлическии и полуметаллический блеск. Многие минералы вообще лишены блеска, на вид они тусклые, матовые. Металлический блеск бывает не только у самородных металлов, но и сульфидов, а также у некоторых оксидов. Многие минералы с металлическим блеском обнаруживают цвета побежалости, и в таких случаях у них часто наблюдаются великолепные радужные переливы.
Налеты и поверхностные явления выветривания могут изменять блеск минерала или значительно уменьшать его. Поэтому определение блеска тоже не всегда оказывается однозначным.
Минералы бывают прозрачными, просвечивающими, то есть слабо пропускающими свет, или непрозрачными. К числу последних относятся минералы с металлическим блеском. Однако почти все минералы, за исключением самородных металлов (кроме золота), прозрачны или просвечивают в очень тонких срезах, называемых шлифами.

Все пропускающие свет минералы, не принадлежащие к кубической сингонии, обнаруживают более или менее сильное двупреломление. Если, к примеру, положить ромбоэдрический кристалл кальцита на страницу с каким-нибудь текстом, то все буквы будут видны сквозь кристалл раздвоенными. Исландский шпат (прозрачная разновидность кальцита) демонстрирует явление двойного лучепреломления особенно отчетливо, и потому этот минерал называют также двупреломляющим шпатом. Однако у большинства минералов двупреломление света так невелико, что невооруженным глазом его не распознать. Причина двойного лучепреломления заключается в том, что световой луч, проходя сквозь кристалл, разлагается на два луча, каждый из которых преломляется по-разному.
У некоторых минералов (преимущественно у драгоценных камней) можно видеть переливы, мерцание и другие световые эффекты (иризацию, опалесценцию). Эти оптические явления возникают вследствие отражения света от тонких пластинок, представляющих собой включения в минерале или непосредственно участвующих в его строении. (Опалесценцию вызывает рассеяние света на слоях из крошечных шариков кремнезема. — Пер.)

Спайность и излом

Многие минералы раскалываются по плоским поверхностям. В таких случаях говорят, что минерал имеет спайность. Спайность зависит от строения кристаллической решетки. В зависимости от легкости, с какой раскалывается минерал, различают весьма совершенную (у слюды), совершенную (у кальцита) и несовершенную (у граната) спайность. Все шпаты (полевой шпат, плавиковый, шпат — флюорит, известковый шпат — кальцит) отличает хорошая спайность. Но встречаются и такие минералы, которые вообще лишены спайности (кварц). В таких случаях отделение друг от друга соприкасающихся индивидов в двойниках срастания называют не спайностью, а отдельностью.
Для минералов, обладающих плохой спайностью или вовсе лишенных ее, важным диагностическим признаком может служить излом — характер поверхности неправильных обломков, на-которые кристалл раскалывается при ударе. Различают раковистый, занозистый, волокнистый, ровный, неровный, ступенчатый и землистый изломы. Раковистый излом типичен для всех разновидностей кварца и для любых стекловатых горных пород.

Твердость

Под твердостью минерала обычно понимают сопротивление, которое оказывает его поверхность при попытке поцарапать ее другим камнем или иным предметом.
Немецкий минералог Фридрих Моос (1773—1839) предложил шкалу, согласно которой минералы группируются в соответствии с их относительной твердостью по десятибалльной шкале, которая называется минералогической шкалой твердости, или шкалой Мооса. Каждый минерал, занимающий определенное место в этой шкале, царапает все минералы с меньшим значением твердости, но в то же время сам царапается стоящими выше него более твердыми минералами. Минералы с равными значениями твердости не царапают друг друга.
Путем сравнения с этой шкалой может быть установлена твердость любого минерала — твердость по Моосу. "Минералы с твердостью 1 и 2 считаются мягкими, от 3 до 6 — средней твердости, а выше 6 — твердыми. О минералах с твердостью 8—10 говорят, что они обладают твердостью драгоценных камней.
Шкала Мооса — относительная шкала. С ее помощью может быть установлено лишь, какой минерал тверже. О том, насколько увеличивается в количественном выражении твердость от ступени к ступени по шкале Мооса, сказать нельзя. В представленной здесь таблице эта шкала сопоставлена с абсолютными значениями твердости — это твердость шлифования в воде по Розивалю. Сопоставление показывает, как скачкообразно возрастает абсолютная твердость. Для неспециалиста определение абсолютной твердости, требующее сложной аппаратуры, практически невозможно.

Шкала
твердости

Твердость по Моосу

Твердость
шлифования

Скоблится ногтем

Царапается ногтем

Царапается медной монетой

Легко царапается перочинным ножом

С трудом царапается перочинным ножом

Ортоклаз

Царапается напильником

Царапает оконное стекло

Легко царапает кварц

Легко царапает топаз

Не царапается ничем

При определении твердости по Моосу следует пользоваться образцами с острыми краями и царапать на робных свежих (не затронутых выветриванием) поверхностях. У ребристых образований, листоватых кристаллов, выветрелых с поверхности минералов значения твердости царапанья получаются заниженными. Применение шкалы Мооса к горным породам в общем случае невозможно вследствие их гетерогенности — присутствия разнородных составных частей.
Главное достоинство шкалы Мооса заключается в простоте ее использования. С помощью эталонных образцов и наборов принадлежностей для царапанья твердость минералов можно легко определять в поле, во время прогулок и экскурсий. Если даже у вас под рукой нет контрольных образцов, то можно воспользоваться другими простыми вспомогательными средствами. Так, наш ноготь царапает минералы с твердостью до 2, перочинный нож — с твердостью до 5—6, стекло без труда царапается кварцем (его твердость по Моосу 7). Конечно, для профессиональной диагностики минерала или драгоценного камня определение твердости по Моосу слишком неточно. Кроме того, драгоценные камни при царапанье можно повредить. Поэтому в подобных случаях прибегают к определению так называемой твердости шлифования, которая измеряется количеством минерала, сошлифовываемого с поверхности образца при определенных условиях.

Плотность

Под плотностью понимается масса вещества, отнесенная к массе равного объема воды. Следовательно, минерал с плотностью 2,6 в 2,6 раза тяжелее такого же объема воды. Плотность минералов, горных пород и руд колеблется от 1 до 20. Минералы с плотностью ниже 2 воспринимаются как легкие (янтарь — 1,0), от 2 до 4 — как нормальные (кварц — 2,6), выше 4 — как тяжелые (галенит, или свинцовый блеск, — 7,5).
Самые дорогие драгоценные камни, так же как и благородные металлы, имеют более высокую плотность, чем такие породообразующие минералы, как кварц и полевой шпат. По этой причине в текучих водах сначала происходит отложение и накопление тяжелых минералов, а потом уже — кварцевых песков, которые их перекрывают. Такого рода месторождения полезных минералов называются россыпями.
Плотность минерала может быть вычислена следующим образом:

Массу минерала нетрудно определить с помощью любых весов. Его объем можно найти разными способами, в том числе посредством вытеснения воды в мерном сосуде или путем гидростатического взвешивания. Второй метод точнее и пригоден даже для мелких образцов. На гидростатических весах подвешенный на тонкой проволочке минерал сначала взвешивается в воздухе, а затем погруженным в воду. Разность обоих результатов соответствует массе вытесненной воды и тем самым численно равна объему минерала. Такой способ определения плотности с точностью до одного знака после запятой доступен и любителю. Разумеется, при этом важно проследить, чтобы минерал был чистым, свободным от посторонних веществ иной плотности.

Масса при взвешивании на воздухе
Масса при взвешивании в воде Разность (объем)

Плотность данного образца составляет 2,7; судя по этой цифре, определяемый минерал — кальцит.

Прочие свойства

Существуют еще и другие свойства и способы, которые могут помочь при определении минералов, это поведение их перед паяльной трубкой и в прозрачных шлифах, магнитность, запах, вкус, ощущение на ощупь.
Испытания на плавкость и реакции окрашивания пламени проводятся с помощью паяльной трубки. Это латунная трубка, на одном конце которой имеется деревянный мундштук, а на другом — волосное отверстие. Вдувая воздух через паяльную трубку в пламя (например, горелки Бунзена или даже обыкновенной свечи), можно очень сильно накалить его и лучеобразно направить в нужную точку. Чтобы эффективно пользоваться паяльной трубкой, требуются вспомогательные лабораторные материалы, а также определенные химические знания и навыки. Поэтому метод паяльной трубки неспециалисты должны использовать лишь в порядке исключения.
Прозрачные шлифы (срезы толщиной 0,02—0,03 мм) позволяют рассмотреть под микроскопом структуру образца. Наряду с полированными шлифами (аншлифами) они применяются при исследовании руд, но первостепенную роль играют в петрографии, при микроскопическом изучении горных пород.

Классификация

Все многообразие минералов подразделяется на группы, объединяющие минералы с общими признаками. В научной минералогии общепринято классифицировать минералы прежде всего по их химическому составу. Ниже приведены классы минералов.

  1. Элементы: алмаз, висмут, графит, золото, медь, мышьяк, платина, сера, серебро.
  2. Сульфиды: антимонит, аргентит, арсенопирит, аурипигмент, блеклая руда, борнит, бурнонит, галенит, киноварь, кобальтин, ковеллин, красная серебряная руда, леллингит, марказит, молибденит, никелин, пентландит, пирит, пирротин, реальгар, станнин, сфалерит, халькозин, халькопирит, хлоантит.
  3. Галогениды: атакамит, галит, карналлит, криолит, сильвин, флюорит.
  4. Оксиды и гидроксиды: анатаз, браунит, вольфрамит, гаусманнит, гематит, гетит. гиббсит, диаспор, ильменит, касситерит, кварц, корунд, куприт, лимонит, магнетит, манганит, опал, пиролюзит, псиломелан, рутил, урановая смолка (настуран), франк- линит, хризоберилл, хромит, цинкит.
  5. Нитраты, карбонаты, бораты: азурит, анкерит, арагонит, борацит, витерит, гидроцинкит, доломит, кальцит, магнезит, малахит, родохрозит, сидерит, смитсонит, стронцианит, церуссит.
  6. Сульфаты, хроматы, мОлибдаты, вольфраматы: ангидрит, англезит, барит, вольфрамит, вульфенит, гипс, крокоит, молибденит, целестин, шеелит.
  7. Фосфаты, арсенаты, ванадаты: апатит, бирюза, ванадинит, вивианит, лазулит, миметезит, пироморфит, урановые слюдки.
  8. Силикаты: авгит, актинолит, андалузит, арфведсонит, берилл, бронзит, везувиан, волластонит. гаюин. геденбергит. гиперстен, диаллаг, диопсид, диоптаз, жадеит, каолинит, кианит (дистен), кордиерит, лазурит, лейцит, монтмориллонит, нефелин, нозеан, оливин, пирофиллит, полевой шпат, пренит, роговая обманка, родонит, серпентин, силлиманит, содалит, сподумен, ставролит, тальк, титанит (сфен), топаз, тремолит, турмалин, хлорит, хризоколла, цеолиты, циркон, цоизит, эгирин.

В минералогии существуют и другие классификационные принципы.
В нашем случае за основу классификации минералов приняты области, в которых они имеют наибольшее значение для человека, то есть выделяются группы породообразующих минералов, драгоценных и поделочных камней и рудных минералов.

Современная наука о драгоценных камнях

Драгоценные камни - это редкие минералы, обычно встречающиеся в виде прозрачных кристаллов. Они отличаются разнообразием и красотой цвета, сильным блеском, иногда и другими оптическими эффектами, высокой твердостью и прочностью, долговечностью.

Они известны со времен первобытного человека, но лишь сравнительно недавно, лет 300 назад, люди научились художественно их обрабатывать. Огранка - создание новых граней в определенном порядке - усиливает блеск и красоту камней. Искусство современной огранки основывается на знании за конов оптики и точных математических расчетах. Впервые же гранильное дело появилось в Древнем Египте за 3 тысячи лет до нашей эры.

Красота, редкость и долговечность обусловили высокую цену драгоценных камней, сделали их символом власти, могущества и богатства. Так было давно, так есть сегодня и, наверное, будет в будущем.

Прошли тысячелетия, и уже в XX веке люди научились искусственно выращивать алмазы, рубины, сапфиры, аквамарины, изумруды и аметисты, по своему качеству и внешнему виду не уступающие природным ювелирным минералам. Сегодня человек может искусственно вырастить и ювелирные камни, которых нет в природе. Это минералы фианит и фабулит, иттрий-галлиевые гранаты, имитирующие алмазы и бриллианты. Искусственные ювелирные камни широко используются во всем мире, но цена их невысока.

Цена настоящего драгоценного камня зависит от индивидуальных особенностей каждого образца природного минерала и от его массы.

Ювелирные камни измеряются своей мерой массы - каратами, а жемчуг - гранами. Стоимость одного карата ограненного ювелирного камня первого порядка на мировом рынке оценивается в 20-25 тысяч американских долларов.

Технический прогресс заставил современного человека искать «вторую профессию» драгоценным камням, и, конечно, она найдена для многих минералов.

Алмаз как самый твердый на земле камень широко применяется при обработке твердых материалов. Мелкими кристаллами алмазов укрепляют буровые коронки, с помощью которых разрушаются на любой глубине самые прочные горные породы. Не надо удивляться: в буровых коронках, шлифовальных кругах находятся не бриллианты, а непрозрачные технические алмазы любого малого размера, вплоть до алмазной пыли. Они-то и составляют подавляющую массу природных и искусственных алмазов.

В отечественных оптических приборах используют кристаллы горного хрусталя высшего качества - прозрачные, как чистая вода. Искусственные монокристаллы - основа лазеров, источников оптического излучения. Примеры применения драгоценных камней в технике можно продолжить.

Некоторые легенды, вероятно, связаны с изменчивостью красоты драгоценных камней. Цвет и блеск камня часто меняются в зависимости от освещенности, влажности воздуха, цвета окружающих предметов. А еще восприятие красоты-камня - плод настроения и душевного состояния человека. Александрит, например, при электрическом освещении фиолетово-красный, а при естественном - изумрудно-зеленый. В лунном свете драгоценные камни сияют иначе, чем при солнечном или электрическом.

Люди могут искусственно изменять цвет драгоценных камней. На Урале, например, морионы - черные кристаллы горного хрусталя - с незапамятных времен помещали в хлебное сырое тесто и ставили в русскую печь. Через час из печи вынимали готовый каравай хлеба, а из него уже золотистые, а не черные морионы. Равномерное нагревание приводило к изменению цвета горного хрусталя.

Сегодня в лабораторных установках - муфельных печах и термостатах, регулируя температуру, научились изменять окраску топаза, берилла, циркона, аметиста и других минералов.

Некоторые драгоценные камни обладают слабой естественной радиоактивностью и тем самым действительно оказывают целебное воздействие на человеческий организм.

Месторождения драгоценных камней известны по всему миру и имеют различное происхождение. Глубинное магматическое происхождение имеют коренные месторождения алмазов. Они связаны с вулканическими трубками взрыва, сложенными кимберлитом - особой горной породой, впервые обнаруженной в Южной Африке близ местечка Кимберли. Однако многие кимберлитовые трубки алмазов не содержат. На поверхности земли эти породы выветриваются и превращаются в синюю глину.

Постоянными и многочисленными спутниками алмазов являются темно-красный гранат пироп и хризолит. Но эти два минерала ювелирного качества встречаются в кимберлитовых трубках исключительно редко. Примерно 1-2 кристалла из сотен тысяч или миллионов их.

В базальтах - темных глубинных магматических породах, излившихся при температуре 1000 °С на поверхность земли, можно обнаружить циркон, сапфир и хризолит.

Самые богатые месторождения драгоценных камней - это, конечно, магматические пегматитовые жилы. Они образуются при медленном остывании нагретых до 1000 °С гранитных расплавов, поднимающихся из недр земли к ее поверхности. Пегматитовые жилы отличаются крупнокристаллическим строением, а в середине их могут быть пустоты (по-уральски «занорыши»). Стенки «занорышей» покрыты кристаллами ювелирных топазов, морионов, аквамаринов, изумрудов, турмалинов. Здесь драгоценные камни находятся среди кристаллов полевого шпата, темной слюды флогопита и светло-фиолетовой литиевой слюды лепидолита.

Гранитный раскаленный расплав, поступающий из недр Земли, нередко химически активно взаимодействует с теми породами, которых он достиг. При взаимодействии с известняками образуются скарны, а при взаимодействии с гнейсами, песчаниками и сланцами формируются грейзены.

Среди скарновых горных пород находят рубины, зеленый гранат гроссуляр, шпинель, лазурит, нефрит, хризолит, хромдиопсид, демантоид.

В горных районах - на Северном Урале, в швейцарских Альпах, на Памире и во многих других местах - встречаются пустотелые кварцевые жилы с кристаллами горного хрусталя, аметиста, иногда изумруда, гематита, рутила. Эти кварцевые жилы возникли из горячих подземных вод, и поэтому их называют гидротермальными.

Не все драгоценные камни возникли в земных глубинах при температурах во многие сотни градусов. Известно, что янтарь - это окаменелая смола хвойных деревьев, и в некоторых янтарных «слезах» можно увидеть комаров и мушек, живших в древнем лесу. Они прилипли к смоле и были замурованы навеки. Какие же обстоятельства, случайные или закономерные, привели к формированию на берегах Балтики крупного единственного месторождения янтаря во всей Европе? Это пока загадка, точнее, много загадок.

Смолу выделяют только поврежденные деревья. Что или кто смог повредить в одном месте массу деревьев, когда и как это произошло? Может быть, виноват редкостный шторм на древнем Балтийском море, поломавший сосны, может быть, метеоритный дождь или что-то другое.

Драгоценные минералы как химически очень стойкие и твердые природные образования после разрушения коренных месторождений природными силами переходят в россыпи, где их нередко находят люди.

Известны драгоценные камни, которые родились при обычной температуре на небольшой глубине благодаря влиянию холодных подземных вод на ранее образованные в недрах Земли минералы. К таковым принадлежат малахит, бирюза, благородный опал.

Малахит образуется за счет медных сульфидных минералов, окисляющихся грунтовыми водами. Старинные медные монеты, пролежавшие в земле или даже хранящиеся в сыром помещении, также покрываются со временем медной зеленью - малахитом.

Сходное с малахитом происхождение имеет и бирюза. Она встречается менее часто, чем малахит. Для ее образования нужны одновременно источники и меди, и фосфора, и алюминия. Алюминия достаточно в любых глинах. Источником меди могут служить гидротермальные сульфиды или самородная медь, а фосфор изначально связан с апатитом, фосфоритом или костями животных.

Характерная особенность почти всех месторождений драгоценных камней - крайне неравномерное присутствие редких минералов в горных породах. Пегматитовая жила может содержать сотни тонн письменного гранита, тонны амазонита, а в «занорыше» будут находиться всего 5-10 кристаллов голубого топаза размером 2-3 см каждый. Но «занорыш» еще надо найти! На пути к нему розовый полевой шпат становится зеленым амазонитом.

Назовем страны - основные поставщики драгоценных камней на мировой рынок. Россия поставляет алмазы и янтарь. Чехия - гранаты пиропы. Индия - сапфиры, изумруды, гранаты альмандины. Бирма - рубины. Иран - бирюзу. Китай - нефрит и бирюзу.

Из книги Популярная история медицины автора Грицак Елена

О драгоценных камнях Закавказья После освобождения от арабского владычества государства Закавказья получили возможность самостоятельного развития. В области медицины довольно быстро сформировалась национальная школа, основанная на достижениях античных и арабских

Из книги Тайны драгоценных камней автора Старцев Руслан Владимирович

Руслан Старцев Тайны драгоценных камней

Из книги Числа Судьбы: пифагорейская, индийская и китайская нумерология автора Костенко Андрей

Глава XVIII. Вибрационные проявления цветов, драгоценных камней и других предметов С помощью Нумерологии можно выбирать гармоничные связи с разнообразными предметами окружающего мира - например, цветами, драгоценными камнями, металлами, видами древесины, фруктами,

Из книги Я познаю мир. Сокровища Земли автора Голицын М. С.

Таблица драгоценных камней Людей всегда волновал вопрос, какой камень самый дорогой, а какой не очень. Поэтому ученые разделили драгоценные камни по их относительной ценности. Так появилась таблица, которую мы приводим ниже.А. Драгоценные ювелирные камни1-й порядок:

Из книги Русская литература сегодня. Новый путеводитель автора Чупринин Сергей Иванович

Знаки на камнях Пару десятилетий назад американские геологи опубликовали уникальную фотографию. На ней сфотографирован камень. Но не обычный, а с отпечатком окуня, который подавился слишком крупной для него рыбой.Геологи не раз обнаруживали и другие камни с необычными

Из книги Энциклопедия языческих богов. Мифы древних славян автора Бычков Алексей Александрович

СОВРЕМЕННАЯ ДРАМАТУРГИЯ Литературно-художественный журнал. Создан в 1982 году. Периодичность - ежеквартально. Тираж: в 1990 - 24 000; в 1991 - 13 000 экземпляров. Публикуются пьесы отечественных и зарубежных авторов, мемуары, статьи о драматургии и театре, хроника. Среди авторов -

Из книги Зарубежная литература XX века. Книга 2 автора Новиков Владимир Иванович

О ЯЗЫЧЕСКИХ КАМНЯХ СИНИЙ КАМЕНЬ из Клещина.«Бысть во граде Переславле камень за Борисом и Глебом в боераку, в нем же вселися демон мести, творя и привлачая к себе ис Переславля людей: мужей и жен и детей их… И они слушаху его и к нему стекахуся из году в год и творяху ему Из книги Большой эзотерический словарь автора Бубличенко Михаил Михайлович

Секрет № 94 Диеты при камнях в почках В лечении мочекаменной болезни народная медицина едина с научной: в борьбе с ней одним из важных факторов является рациональное питание. Знать состав камней при мочекаменной болезни очень важно, так как, зная состав, можно узнать, как

Из книги Я познаю мир. Драгоценные камни автора Орлова Н.

Из книги Толковый словарь по аналитической психологии автора Зеленский Валерий Всеволодович

«Камешек, мне больно!» (о камнях, живущих в живых организмах) Огромен и разнообразен мир камней, но есть и то, что объединяет их. Все они образовались и живут во внешней среде. И почти всегда в образовании камня участвуют живые организмы: бактерии, насекомые, животные, рыбы.

Из книги автора

Знаки на камнях Около 40 миллионов лет тому назад в водах Северной Америки один окунь подавился селедкой, да так, что тут же умер. Откуда мы это знаем? По отпечатку, найденному на камне американскими геологами. Как же это произошло? В сезон дождей в озере разлилась вода. И



Рассказать друзьям