Какие реакции происходят на этих стадиях? Каковы условия протекания этих реакций? Где они осуществляются? Этапы энергетического обмена. Клеточное дыхание

💖 Нравится? Поделись с друзьями ссылкой

Процессом, противоположным синтезу, является диссимиляция – совокупность реакций расщепления. При расщеплении высокомолекулярных соединений выделяется энергия, необходимая для реакций биосинтеза. Поэтому диссимиляцию называют еще энергетическим обменом клетки или катаболизмом.

Химическая энергия питательных веществ заключена в различных ковалентных связях между атомами в молекулах органических соединений.

Часть энергии, освобождаемой из питательных веществ, рассеивается в виде теплоты, а часть аккумулируется, т. е. накапливается в богатых энергией фосфатных связях АТФ. Именно АТФ обеспечивает энергией все виды клеточных функций: биосинтез, механическую работу (деление клетки, сокращение мышц), активный перенос веществ через мембраны, поддержание мембранного потенциала в процессе проведения нервного импульса, выделение различных секретов.

Благодаря богатым энергией связям в молекулах АТФ клетка может накапливать большое количество энергии в очень небольшом пространстве и расходовать ее по мере надобности. Синтез АТФ осуществляется в митохондриях. Отсюда молекулы АТФ поступают в разные участки клетки, обеспечивая энергией процессы жизнедеятельности.

Этапы энергетического обмена . Энергетический обмен обычно делят на три этапа. Первый этап – подготовительный. На этом этапе молекулы ди– и полисахаридов, жиров, белков распадаются на мелкие молекулы – глюкозу, глицерин и жирные кислоты, аминокислоты; крупные молекулы нуклеиновых кислот – на нуклеотиды. На этом этапе выделяется небольшое количество энергии, которая рассеивается в виде теплоты.

Второй этап – бескислородный, или неполный. Он называется также анаэробным дыханием (гликолизом), или брожением. Образующиеся на этом этапе вещества при участии ферментов подвергаются дальнейшему расщеплению. Например в мышцах в результате анаэробного дыхания молекула глюкозы распадается на две молекулы пировиноградной кислоты (С 3 Н 4 О 3), которые затем восстанавливаются в молочную кислоту (С 3 Н 6 О 3). В реакциях расщепления глюкозы участвуют фосфорная кислота и АДФ. В суммарном виде это выглядит так:

С 6 Н 12 О 6 + 2Н 3 РО 4 + 2АДФ → 2С 3 Н 6 О 3 + 2АТФ + 2Н 2 О.

У дрожжевых грибов молекула глюкозы без участия кислорода превращается в этиловый спирт и диоксид углерода (спиртовое брожение):

С 6 Н 12 О 6 + 2Н 3 РО 4 + 2АДФ → 2С 2 Н 5 ОН + 2СО 2 + 2АТФ + 2Н 2 О.

У других микроорганизмов гликолиз может завершаться образованием ацетона, уксусной кислоты и т. д.

Во всех случаях распад одной молекулы глюкозы сопровождается образованием двух молекул АТФ. В ходе бескислородного расщепления глюкозы в виде химической связи в молекуле АТФ сохраняется 40 % энергии, а остальная рассеивается в виде теплоты.

Третий этап энергетического обмена – стадия аэробного дыхания, или кислородного расщепления. Реакции этой стадии энергетического обмена также катализируются ферментами. При доступе кислорода к клетке образовавшиеся во время предыдущего этапа вещества окисляются до конечных продуктов – Н 2 О и СО 2 . Кислородное дыхание сопровождается выделением большого количества энергии и аккумуляцией ее в молекулах АТФ. Суммарное уравнение аэробного дыхания выглядит так:

2С 3 Н 6 О 3 + 6О 2 + 36Н 3 РО 4 + 36АДФ → 6СО 2 + 38Н 2 О + 36АТФ.

Таким образом, при окислении двух молекул молочной кислоты образуются 36 молекул АТФ. Следовательно, основную роль в обеспечении клетки энергией играет аэробное дыхание.

Тема: Организация потока энергии и информации в клетке.

Цель: Изучить важнейшее свойство живого – обмен веществ и энергии, которое проявляется на разных уровнях организации.

Задание для самоподготовки

1. Ассимиляция и диссимиляция в живой клетке, их взаимосвязь, биологическое значение. Продукты ассимиляции и диссимиляции.

2. Типы ассимиляции (автотрофная, гетеротрофная, миксотрофная)

3. Фотосинтез. Организмы, способные к фотосинтезу.

4. Хемосинтез. Сходство и отличие фото- и хемосинтеза.

5. Строение, функции и образование АТФ.

6. Типы диссимиляции (аэробный и анаэробный). Дыхание и брожение. Отличие дыхания от брожения.

7. Характеристика основных этапов энергетического обмена (подготовительный, гликолиз, гидролиз).

8. Особенности строения ДНК и РНК. Типы РНК. Кодон, антикодон. Определение, строение, расположение в биомолекулах.

9. Местоположение исходной информации для биосинтеза белка. Условия, необходимые для биосинтеза белка.

10. Начало синтеза белка: транскрипция, процессинг, роль РНК-полимеразы в транскрипции. Промотор и терминатор транскрипции.

11. Трансляция, ее осуществление.

12. Формирование первичной, вторичной, третичной и четвертичной структуры белка. Органоиды, в которых осуществляется этот процесс.

13. Заполнить таблицы 7, 8, 9, 10, 11 (см. Приложение 2).

Обмен веществ и превращение энергии в клетке (метаболизм) – важнейшее свойство живого. Он представляет собой совокупность химических реакций, протекающих в клетках с поглощением или выделением энергии.

Ассимиляция (анаболизм) – совокупность всех процессов синтеза сложных органических веществ, сопровождающимся поглощением энергии (эндотермический процесс). Это пластический обмен : образуются различные вещества.

Диссимиляция (катаболизм) – совокупность реакций расщепления ; переход веществ, богатых энергией, в простые, менее энергетически богатые (экзотермический процесс) . Это энергетический обмен : образуются различные виды энергии.

Ассимиляция и диссимиляция являются противоположными сторонами одного процесса – обмена веществ. Реакции ассимиляции нуждаются в энергии, которая поступает из реакций диссимиляции; а для осуществления реакций диссимиляции необходим постоянный синтез белков-ферментов, которые образуются в реакциях ассимиляции.

Совокупность реакций ассимиляции и диссимиляции лежит в основе жизнедеятельности организмов и обусловливает связь организма с окружающей средой.

По характеру ассимиляции различают автотрофные, гетеротрофные и миксотрофные организмы. Автотрофные – это организмы, которые сами синтезируют органические вещества из неорганических. Они могут использовать разные источники энергии (энергия солнечного света или химических процессов) для производства углеводов, жиров, белков, необходимых для поддержания жизнедеятельности. Это все организмы, содержащие хлорофилл (сине-зеленые водоросли, бурые водоросли, высшие растения), и некоторые бактерии.


Гетеротрофы используют готовые органические соединения в качестве пищи с последующей ее механической и химической переработкой. Гетеротрофами являются все животные, грибы. Миксотрофы – организмы, способные как к синтезу органических веществ, так и использованию их в готовом виде (эвглена зеленая).

Фотосинтез – синтез органических соединений в зеленых растениях из воды и двуокиси углерода с использованием солнечной энергии, поглощаемой хлорофиллом. В гранах (тилакоидах) протекают реакции, вызываемые светом (световые ), а в строме – реакции, не связанные со светом (темновые или реакции фиксации углерода ).

Световая фаза фотосинтеза. Протекает в тилакоидах хлоропластов при участии солнечного света и молекул хлорофилла. При поглощении кванта света молекулой хлорофилла один электрон переходит в возбужденное состояние и поднимается на более высокий энергетический уровень. Одновременно с этим происходит фотолиз воды с образованием ионов Н + и ОН – .

Возбужденный электрон присоединяется к иону Н + , восстанавливая его до атома Н. Далее два образовавшихся атома Н соединяются с никотинамиддинуклеотидфосфатом (НАДФ) и восстанавливают его до НАДФ·Н 2 . Электроны от гидроксид-ионов возвращаются в молекулу хлорофилла на место возбужденных, а сами гидроксид-ионы превращаются в свободные радикалы и, взаимодействуя друг с другом, образуют воду и свободный кислород.

В процессе переходов протоны скапливаются на внутренней стороне мембраны граны хлоропласта, а электроны на наружной поверхности, создавая, таким образом, разность потенциалов. Когда разность потенциалов достигает критического уровня, протоны проходят по специальным каналам мембран, в которых находятся ферменты, синтезирующие АТФ.

Таким образом, в световую фазу происходят следующие процессы: фотолиз воды с выделением кислорода, восстановление НАДФ, синтез АТФ.

Темновая фаза фотосинтеза не зависит от света и протекает в строме хлоропластов, как на свету, так и в темноте. Энергия, накопленная в световую фазу, используется для синтеза моносахаридов из диоксида углерода (поступает из воздуха через устьица) и водорода (отщепляется от НАДФ·Н 2) путем сложных ферментативных реакций в цикле Кальвина:

6 СО 2 + 24 Н + → С 6 Н 12 О 6 + 6 Н 2 О

Хемосинтез – синтез органических соединений из неорганических с использованием энергии химических процессов (окислительно-восстановительных реакций). В отличие от фотосинтезирующих автотрофов, использующих световую энергию, хемосинтезирующие автотрофы используют энергию окислительно-восстановительных реакций. К хемоавтотрофам относятся некоторые бактерии (нитрифицирующие, серобактерии, железобактерии).

По характеру диссимиляции различают аэробные и анаэробные организмы. Аэробы – это организмы, использующие для процесса окисления (дыхания) свободный кислород. Дыхание – совокупность процессов, обеспечивающих газообмен между организмами и внешней средой (внешнее дыхание) и окислительные процессы в клетках с выделением энергии (внутреннее или клеточное дыхание). Энергия, выделяющаяся в результате окисления органических веществ, обеспечивает разнообразные процессы жизнедеятельности. Анаэробы – организмы, осуществляющие окисление веществ без присутствия кислорода. Это могут быть различные типы брожения : спиртовое (конечный продукт – этиловый спирт), молочнокислое (конечный продукт – молочная кислота), пропионовокислое (конечный продукт – пропионовая кислота).

Углеводы, жиры, белки подвергаются расщеплению, а затем окислению. Выделяющаяся энергия фиксируется в виде макроэргических связей в молекулах АТФ, которые являются переносчиками энергии от одного процесса к другому. Синтез АТФ происходит в митохондриях в процессе окислительного фосфорелирования (образование АТФ из АДФ с участием фосфата) в результате цикла Кребса. АТФ представляет собой нуклеотид, состоящий из остатков аденина, рибозы и трифосфата.

Этапы энергетического обмена:

1. Подготовительный этап. Он заключается в распаде белков, жиров, углеводов на мономеры. У человека это происходит в желудочно-кишечном тракте под действием пищеварительных ферментов. При этом выделяется только тепловая энергия. Белки расщепляются до аминокислот, липиды – до глицерина и жирных кислот, крахмал – до глюкозы.

2. Гликолиз (бескислородный этап) осуществляется в цитоплазме клетки. Идет с участием различных ферментов. Происходит анаэробное расщепление 1 молекулы глюкозы на 2 молекулы пировиноградной кислоты. При этом образуются 2 молекулы АТФ, что составляет 35% энергии 1 молекулы глюкозы.

В анаэробных условиях глюкоза расщепляется на 2 молекулы молочной кислоты, или этилового спирта, или пропионовой кислоты. Этот процесс называется брожением .

3. Гидролиз (кислородный этап) осуществляется в митохондриях, связан с матриксом и внутренней мембраной митохондрий. Происходит конечное окисление пировиноградной кислоты с участием различных ферментов до углекислого газа и воды с регенерацией всей оставшейся энергии в цикле Кребса (цикл трикарбоновых кислот, цикл лимонной кислоты). При этом образуются 36 молекул АТФ.

Главенствующая роль в хранении и потоке информации принадлежит нуклеиновым кислотам. В каждый нуклеотид входит молекула фосфорной кислоты, пентоза и одно из четырех азотистых оснований: аденин (А), гуанин (Г), цитозин (Ц), тимин (Т) или урацил (У). Цепь чередующихся нуклеотидов, соединенных фосфодиэфирными связями, образует первичную структуру нуклеиновых кислот.

ДНК является биополимером, состоит из двух цепей нуклеотидов, в состав которых кроме молекулы фосфорной кислоты, входит дезоксирибоза и азотистые основания: А, Т, Г, Ц. ДНК может иметь вторичную и третичную структуры. Вторичная структура ДНК – двойная спираль: две цепи комплементарны, антипараллельны, закручены в правую спираль, азотистые основания внутри соединены водородными связями, снаружи – фосфатно-сахарная лента.

РНК состоит из одной цепи нуклеотидов, в состав которых входит рибоза и азотистые основания: А, Г, Ц, У. РНК не способна к редупликации. Существует несколько типов РНК :

1) матричная (м-РНК) или информационная (и-РНК) РНК – метаболически нестабильная копия гена или группы генов, она имеет вторичную (короткая спираль) и третичную структуры (образует комплексы с белками – информасома);

2) рибосомная РНК (р-РНК) – образует рибосому, она имеет вторичную (короткая спираль, образованная 1 цепью, принцип комплементарности не соблюдается) и третичную структуру (образует комплексы с белками – домены , которые образуют субъединицы рибосомы);

3) транспортная РНК (т-РНК) – переносит аминокислоты к рибосоме, имеет вторичную структуру в виде трилистника; антикодон – участок молекулы т-РНК, состоящий из трех нуклеотидов и «узнающий» соответствующий ему участок из трех нуклеотидов в молекуле м-РНК, с которым взаимодействует комплементарно.

Транскрипция – процесс копирования генетической информации с ДНК с образованием РНК. Осуществляется с помощью фермента – РНК-полимеразы, который копирует одну из цепей ДНК и действует по принципу комплементарности.

Начальный участок ДНК, с которого начинается транскрипция, называется промотор . К нему присоединяются белки, облегчающие начало транскрипции, и фермент транскрипции РНК-полимераза. Оператор – участок ДНК, связывающий белки-регуляторы транскрипции. К оператору примыкают структурные гены , содержащие перемежающиеся участки интронов и экзонов. Отдельные участки генов несут разную функцию. Одна группа участков относится к информативным, а другая – к неинформативным. К информативным относятся структурные гены, несущие информацию о структуре полипептидной цепи или нематричных РНК (р-РНК, т-РНК); неинформативные выполняют другие функции и не содержат генетической информации. Но и во многих структурных генах, особенно эукариотов, генетическая информация записана с перерывами. Участки в структурных генах, несущие информацию, называются экзонами , а неинформативные – интронами . В конце транскриптона имеется последовательность нуклеотидов – терминатор , которая является своего рода сигналом об окончании транскрипции.

Процесс транскрипции можно разбить на три фазы:

1. Инициация : фермент РНК-полимераза присоединяется к промотору, расплетает спираль ДНК на 1 виток и начинает синтезировать короткие фрагменты РНК, которые отщепляются: идет абортивная транскрипция. После достижения определенной массы РНК-продукта, начинается продуктивная транскрипция.

2. Элонгация : РНК-полимераза скользит вдоль матрицы ДНК и читает только одну цепь. Каждый следующий нуклеотид спаривается с комплементарным основанием в ДНК-матрице, а РНК-полимераза "скрепляет" его с растущей цепью РНК фосфодиэфирными связями. Для движения РНК-полимеразы необходима энергия АТФ.

3. Терминация : РНК-полимераза достигает нуклеотидных последовательностей терминатора ДНК, являющихся стоп-сигналами. После окончания транскрипции синтезированная РНК отделяется от ДНК. На этом этапе РНК представляет собой точную копию ДНК и называется проинформационная РНК (про-и-РНК).

В ядре про-и-РНК проходит стадию созревания, или процессинга . Процессинг включает в себя три операции:

1. Вырезание неактивных участков (интронов) и сращивание информативных участков (экзонов) РНК – сплайсинг .

2. Модификация концевых участков про-и-РНК с образованием и-РНК.

При транскрипции генетический текст ДНК переписывается в последовательность нуклеотидов и-РНК.

Трансляция – синтез белка, перевод генетической информации с кода ДНК и и-РНК в последовательность аминокислот. В биосинтезе белка участвуют 20 аминокислот. Каждая аминокислота кодируется 3 нуклеотидами – триплет или кодон .

Процесс трансляции делят на 4 этапа:

1. Активирование аминокислот : образуется комплекс аминокислоты и т-РНК (аминоацил-т-РНК).

2. Инициация : связывание м-РНК с малой субъединицей рибосомы и связывание большой субъединицы рибосомы с инициальным комплексом аминоацил-т-РНК; антикодон т-РНК комплементарен инициальному кодону м-РНК, в большой субъединице рибосомы имеются 2 активных участка (аминоацильный и пептидильный ).

3. Элонгация : рост полипептидной цепи

Поступление активированной аминокислоты в рибосому (в аминоацильный участок): идет процесс узнавания до полной комплементарности, при соответствии комплекс аминокислота-т-РНК запирается в рибосоме;

Образуется пептидная связь (инициальная аминокислота присоединяется к другой аминокислоте);

Транслокация: ферменты катализируют передвижение пептидил-т-РНК из аминоацильного участка в пептидильный участок, вытесняя освободившуюся т-РНК, при этом пептидил-т-РНК тянет за собой м-РНК; образовался дипептид, дальше читается следующий триплет и стадии элонгации повторяются до терминальных триплетов.

4. Терминация : при достижении терминальных триплетов ферменты узнают их и отщепляют полипептид от т-РНК в среду, при этом т-РНК освобождается из рибосомы и тоже выходит в среду.

Белковые молекулы имеют различную структуру. Выделяют первичную, вторичную, третичную и четвертичную структуры. Первичная структура белка – полипептидная цепь с ковалентными связями. Также могут образовываться дисульфидные мостики: их образуют две рядом располагающиеся серосодержащие аминокислоты. Вторичная структура белка – α-спирали (1 виток – 3,6 аминокислоты) и β-структуры (имеют вид зигзага, образуются в местах с повышенной концентрацией серосодержащих аминокислот) характеризуются образованием водородных связей. Третичная структура белка – упаковка белка в трехмерном пространстве. Большинство белков имеют глобулярную структуру (глобула – комочек), ряд белков – фибриллярную (фибрилла – нить), и множество белков имеют промежуточные формы. Четвертичная структура характерна только для олигомерных (содержат до 50 аминокислот) белков, которые состоят из нескольких субъединиц (дыхательные ферменты). Но любую структуру белка определяет его аминокислотная последовательность.

Катализируют отдельные реакции, протекающие в организме. Совокупность этих реакций представляет собой обмен веществ (метаболизм). В организме и отдельных его клетках постоянно происходит, с одной стороны, процесс распада отдельных компонентов клетки (липидов, углеводов, белков), а с другой стороны, синтез новых молекул этих соединений. Процессы превращения сложных биологических молекул в более простые называются диссимиляцией. Липиды и углеводы в организме распадаются в конечном итоге до углекислого газа и , - до углекислого газа, воды и аммиака или его производных. Процессы диссимиляции происходят с выделением энергии, поэтому их называют еще энергетическим обменом. Биосинтез новых органических соединений называется ассимиляцией, или пластическим обменом. В результате пластического обмена клетка обеспечивается строительным материалом. Процессы ассимиляции протекают с поглощением энергии, которая образуется при энергетическом обмене.

Процессы ассимиляции и диссимиляции происходят постоянно и взаимно дополняют друг друга. Энергия, образующаяся в процессах диссимиляции, используется для биосинтеза новых, специфичных для клетки соединений. Синтезированные в результате процессов ассимиляции вещества используются для построения новых клеток и отдельных органоидов и для замены старых молекул клетки. Процесс обмена веществ возможен только потому, что клетки живых существ потребляют извне материю и энергию.

Обычно процессы ассимиляции и диссимиляции происходят с примерно одинаковой скоростью. Однако в некоторых ситуациях преобладают процессы ассимиляции (например, усиленный рост организма в молодом возрасте, увеличение массы тела при обильном питании при недостаточной физической нагрузке) или процессы диссимиляции (уменьшение массы тела при голодании).

В отличие от неживой природы, где самопроизвольно протекают только процессы, связанные с уменьшением упорядоченности системы, в живом организме упорядоченность возрастает (при развитии) или поддерживается на более или менее постоянном уровне. Это возможно потому, что в организме за счет процессов диссимиляции постоянно образуется энергия. Часть энергии рассеивается в виде тепла, а остальная часть используется для обеспечения процессов жизнедеятельности: биосинтетических процессов, поддержания неравновесного распределения концентрации ионов снаружи и внутри клетки, сокращения мышц, обеспечения движения клеток и т. п.

Освобождаемая в процессах диссимиляции, может запасаться в виде энергии химической (макроэргической) связи в молекуле АТФ.

АТФ (аденозинтрифосфорная кислота) представляет собой мононуклеотид, состоящий из азотистого основания аденина, пятиуглеродного сахара рибозы и трех остатков фосфорной кислоты. При гидролизе молекулы АТФ, который происходит под действием особых ферментов, называемых АТФазами, образуется молекула АДФ (аденозиндифосфорной кислоты), неорганический фосфат и освобождается большое количество энергии (до 40 кДж). Именно поэтому концевая связь между остатками фосфорной кислоты в молекуле АТФ называется макроэргической. Гидролиз АТФ до АМФ (аденозинмонофосфорная кислота) и пирофосфата также сопровождается значительным выделением энергии, то есть связь между концевым и вторым остатком фосфорной кислоты в молекуле АТФ также является макроэргической. В основном в клетке используется энергия концевой фосфатной связи молекулы АТФ.

АТФ является универсальным аккумулятором энергии в живой природе. Процессы, происходящие с выделением энергии, сопровождаются синтезом АТФ из АДФ и неорганического фосфата. В свою очередь, процессы, протекающие с потреблением энергии, сопровождаются гидролизом АТФ до АДФ и неорганического фосфата. Именно поэтому большинство АТФаз способно обеспечивать какую-либо работу: например, гидролиз АТФ актомиозиновым комплексом приводит к сокращению мышечных волокон, (ионные насосы) обеспечивают перенос ионов через мембрану в направлении более высокой концентрации ионов.

Энергетический обмен

Энергетический обмен представляет собой совокупность механизмов, с помощью которых молекулы клеточного «топлива» разрушаются, а заключенная в них энергия превращается в энергию фосфатных связей АТФ. Энергетический обмен протекает в три основных этапа. Первый, или подготовительный, этап происходит в пищеварительном тракте животных и в цитоплазме клеток. В результате него происходит распад крупных молекул биополимеров до составляющих его мономеров: белки превращаются в аминокислоты, нуклеиновые кислоты - в мононуклеотиды, а затем в сахара, азотистые основания и фосфорную кислоту, углеводы - в простые сахара, а липиды - в глицерин и жирные кислоты. На этом этапе выделяется небольшое количество энергии, которое рассеивается в виде тепла.

На втором этапе энергетического обмена происходит бескислородное (анаэробное) многоступенчатое преобразование образующихся в результате первого этапа соединений в еще более простые вещества. Выделяющаяся при этом энергия частично запасается в виде терминальной фосфатной связи АТФ, то есть в процессе анаэробного расщепления из АДФ образуется АТФ. Характерным примером анаэробного превращения субстратов является гликолиз, в результате которого в отсутствие кислорода глюкоза превращается в молочную кислоту. Суммарно реакции гликолиза можно представить следующим уравнением:

С 6 Н 12 O 6 + 2АДФ + 2Н 3 РO 4 → 2С 3 Н 6 O 3 + 2 АТФ + 2Н 2 O

В результате гликолиза одна молекула глюкозы, в состав которой входят 6 углерода, сначала превращается в две молекулы трехуглеродной пировиноградной кислоты (С 3 Н 4 O 3). В некоторых случаях, например, в мышечных клетках пировиноградная кислота восстанавливается до молочной кислоты. При этом выделяется энергия (около 200 кДж), часть из которой (около 80 кДж) запасается в виде двух молекул АТФ. Для протекания гликолиза необходимо присутствие АДФ и фосфорной кислоты, но эти вещества постоянно присутствуют в цитоплазме клеток. Анаэробное расщепление глюкозы характерно для микроорганизмов, которые могут существовать в анаэробных условиях. Процесс гликолиза также интенсивно протекает в скелетных мышцах, которые способны длительно функционировать в отсутствие кислорода. В клетках растений и некоторых дрожжей гликолиз может идти по пути спиртового брожения: в этом случае образующаяся в результате гликолиза пировиноградная кислота превращается в углекислый газ и уксусный альдегид, который затем восстанавливается до этилового спирта.

Поскольку появились на Земле в то время, когда ее еще не содержала кислорода, анаэробное брожение следует рассматривать как более простую форму биологического механизма, обеспечивающего получение энергии из питательных веществ. У большинства бактерий, дрожжей, грибов, а также в клетках всех высших растений и животных анаэробное расщепление глюкозы представляет собой обязательную стадию превращения «топлива», за которым следует аэробная фаза - дыхание.

Или окисление, представляет собой заключительный, третий этап энергетического обмена. В процессе этого этапа происходит окисление пировиноградной кислоты, образующейся в результате гликолиза, до углекислого газа и воды. Этот этап происходит с участием многочисленных ферментов, находящихся у растений и животных в митохондриях, а у бактерий - на цитоплазматической мембране, и молекулярного кислорода.

Количество энергии, освобождаемое при полном окислении глюкозы до СO 2 и Н 2 O, почти в 15 раз больше того, что выделяется при превращении глюкозы в молочную кислоту. Таким образом, в процессе гликолиза освобождается очень небольшое количество энергии, которое потенциально может быть извлечено из глюкозы. Это объясняется тем, что продукт гликолиза - молочная кислота - соединение почти столь же сложное, как и глюкоза, и его углеродные атомы имеют почти ту же степень окисления, что и в глюкозе (соотношение между количеством атомов углерода и в молочной кислоте то же, что и в глюкозе). Продукт заключительной стадии энергетического обмена, С02, значительно более простое соединение, у которого атом углерода полностью окислен. Именно в процессе окисления и выделяется значительное количество энергии, большая часть которой (около 40%) запасается в виде АТФ.

Общая схема процессов дыхания. Образующаяся в процессе гликолиза пировиноградная кислота проникает в митохондрии, где она подвергается окислительному декарбоксилированию, превращаясь в уксусную кислоту (ацетат), вернее, в ее активную форму:

C 3 H 4 O 3 → CO 2 + CH 3 COOH

Активные формы ацетата могут образовываться в организме также при расщеплении аминокислот и жирных кислот. Эти формы ацетата вступают в заключительную стадию окислительного катаболизма, где подвергаются каталитическому расщеплению с освобождением СO 2 и атомов водорода:

СН 3 СООН + 2Н 2 O 2СO 2 + 8Н

Циклическая совокупность реакций, в результате которых происходит превращение активной формы ацетата в углекислый газ и атомы водорода, называется циклом трикарбоновых кислот, или циклом Кребса. Основная часть образовавшихся в результате расщепления ацетата атомов водорода переносится на окислитель НАД + (никотинамидадениндинуклеотид), соединение, которое относится к пиридиновым нуклеотидам и используется в процессах метаболизма как переносчик атомов водорода.

Энергия, освобождающаяся в процессе дыхания, может запасаться в виде АТФ благодаря последовательному протеканию окислительно-восстановительных реакций. Окислительно-восстановительными называются реакции, в процессе которых происходит перенос электронов от доноров электронов (восстановителя) к акцептору электронов (окислителю). В некоторых окислительно-восстановительных реакциях перенос электронов осуществляется путем передачи атомов водорода; таким образом, дегидрирование и окисление являются эквивалентными процессами. Часто для обозначения электронов или атомов водорода, принимающих участие в окислительно-восстановительном процессе, используют термин восстановительные эквиваленты.

Окислители и восстановители функционируют как сопряженные окислительно-восстановительные пары. В реакциях метаболизма такие окислительно-восстановительные пары представлены, в частности, пиримидиновыми нуклеотидами, НАД и НАДФ (последнее соединение является фосфорилированной формой НАД). Эти соединения входят в состав ферментов, участвующих в окислительно-восстановительных реакциях. В окислительно-восстановительных реакциях, протекающих в живых системах, окисленная форма этих соединений (обозначается как НАД + и НАДФ +) переходит в восстановленную форму (обозначается как НАДН и НАДФН). При этом от молекулы субстрата, участвующей в окислительном-восстановительном процессе, уходят два восстановительных эквивалента. Они представлены гидрид ионом (Н — , два электрона и протон), который связывается с молекулой НАД + . Освобождающийся после связывания гидрид иона протон (Н +) переходит в окружающую среду:

НАД + + 2Н → НАДН + Н +

Восстановленная молекула НАД (НАДН) вступает во взаимодействие с начальным компонентом дыхательной цепи. Дыхательная цепь состоит из последовательно расположенных в мембране митохондрий белков, являющихся переносчиками восстановительных эквивалентов (водорода или электронов). Значительная часть переносчиков представлена цитохромами - железосодержащими белками. В ходе переноса электронов по дыхательной цепи валентность железа в цитохромах обратимо изменяется: Ре(II) -> Ре(III). Электроны последовательно передаются от одного переносчика к другому, и в конечном итоге - к молекулярному кислороду. Последний цитохром в цепи реагирует с молекулярным кислородом. Процесс переноса электронов по дыхательной цепи, который представляет собой совокупность окислительно-восстановительных реакций, сопровождается выделением значительного количества энергии. Часть этой энергии запасается в виде АТФ, которая образуется в результате сопряженного с окислением фосфорилирования АДФ.

В клетках эукариот процесс дыхания, сопряженного с трансформацией энергии, происходит во внутренней мембране митохондрий. Внутренняя мембрана митохондрий образует многочисленные глубокие складки, называемые кристами. У бактерий, способных дышать, этот процесс осуществляется на цитоплазматической мембране. Превращение энергии, освобождающейся при перемещении электронов по дыхательной цепи, возможно только в том случае, если внутренняя мембрана митохондрий непроницаема для ионов. Это обусловлено тем, что энергия запасается в виде разницы концентраций (градиента) протонов.

Процесс передачи восстановительных эквивалентов по дыхательной цепи осуществляется таким образом, что на некоторых стадиях происходит перемещение от одного компонента дыхательной цепи к другому не только электрона, но и протона (то есть переносится атом водорода). Компоненты дыхательной цепи расположены в мембране митохондрий так, что этот протон связывается с переносчиком на внутренней стороне мембраны митохондрий. Атомы водорода (суммарно электрон и протон) пересекают мембрану, протон освобождается с наружной стороны мембраны, а электроны продолжают свой путь по дыхательной цепи. На заключительном этапе с электронами, прошедшими свой путь по дыхательной цепи, взаимодействует молекулярный кислород и протоны, которые постоянно присутствуют в воде. В результате этой реакции образуются молекулы воды:

O 2 + 4е — + 4Н + → 2Н 2 O

Перемещение протонов из матрикса в межмембранное пространство митохондрий, которое осуществляется благодаря функционированию дыхательной цепи, приводит к тому, что матрикс митохондрий защелачивается, а межмембранное пространство закисляется. Таким образом, в процессе функционирования дыхательной цепи внутренняя сторона митохондриальной мембраны заряжается отрицательно, а наружная - положительно. Образовавшаяся разница в концентрации протонов по разные стороны митохондриальной мембраны может быть использована для синтеза АТФ из АДФ и неорганического фосфата. Синтез осуществляется специальным ферментом, встроенным в мембрану митохондрий и называемым АТФ-синтазой.

Молекула АТФ-синтазы расположена в митохондриальной мембране таким образом, что формирует канал, пересекающий мембрану, по которому могут перемещаться протоны. Внутрь матрикса выступает значительная часть молекулы АТФ-синтазы, которая непосредственно обеспечивает образование АТФ из АДФ и неорганического фосфата. Когда канал открывается, то протоны свободно перемещаются по нему с внешней стороны мембраны на внутреннюю, то есть из межмембранного пространства, где концентрация протонов высока, в матрикс, где она ниже. Однако канал открывается в том случае, когда разность потенциалов на мембране достигает критического уровня (более 100 мВ). При прохождении протонов через канал освобождается энергия, за счет которой обеспечивается присоединение неорганического фосфата к АДФ с образованием макроэргической связи.

Баланс энергии. При полном окислении одной молекулы глюкозы в результате гликолиза и последующего аэробного окисления синтезируется тридцать восемь молекул АТФ. Суммарно этот процесс можно представить в виде следующего уравнения:

С 6 Н 12 O 6 + 6O 2 + 38АДФ + 38Н 3 РO 4 -> 6СO 2 + 38АТФ + 44Н 2 O

Таким образом, в результате превращения глюкозы в углекислый газ и воду, описываемого уравнением:

C 6 H 12 O 6 + 6O 2 → 6СO 2 + 6Н 2 O

осуществляется синтез АТФ из АДФ и неорганического фосфата в соответствии с уравнением:

38АДФ + 38Н 3 РO 4 -> 38АТФ + 38Н 2 O

Учитывая, что терминальная фосфатная связь в молекуле АТФ сохраняет около 40 кДж энергии, можно заключить, что полное окисление глюкозы в организме позволяет запасти 1520 кДж энергии.

Пластический обмен

Пластический обмен представляет собой совокупность реакций биосинтеза, в результате которого из поступающих в клетку веществ образуются характерные для данной клетки вещества. К пластическому обмену относятся фотосинтез, синтез белков, нуклеиновых кислот, жиров и углеводов.

Фотосинтез. По тому, какой тип питания используют живые организмы, их можно разделить на две большие группы: автотрофы и гетеротрофы.

Гетеротрофы - это организмы, которые не способны к синтезу органических веществ из неорганических. По этой причине они используют в качестве пищи готовые органические соединения. К гетеротрофам относятся животные, а также значительная часть грибов и бактерий.

Автотрофы - это организмы, осуществляющие синтез органических соединений из неорганических. К автотрофам относятся все растения и некоторые бактерии. В свою очередь, автотрофы можно разделить на хемо- и фотосинтезирующие. К хемосинтезирующим относятся бактерии, которые способны использовать энергию, выделяющуюся при окислении некоторых химических веществ, например сероводорода, аммиака, нитритов. Фотосинтезирующие организмы, к которым относятся как эукариоты (высшие зеленые растения, зеленые, бурые и красные водоросли, эвгленовые и диатомовые водоросли), так и прокариоты (сине-зеленые водоросли, зеленые и пурпурные бактерии) используют для синтеза органических соединений энергию солнечного света.

Синтез органических соединений с использованием энергии солнечного света называется фотосинтезом.

Суммарное уравнение фотосинтеза для всех фотосинтезирующих организмов, за исключением бактерий, может быть представлено в следующем виде:

12Н 2 O + 6СO 2 → С 6 Н 12 O 6 + 6Н 2 O + 6O 2

Фотосинтез протекает в специализированных органоидах зеленых растений, называемых хлоропластами. У фотосинтезирующих бактерий этот процесс осуществляется на наружной мембране бактерии или в хроматофорах, мелких сферических мембранных пузырьках, расположенных в цитозоле бактериальной клетки. В структурном отношении хлоропласты близки к митохондриям: они имеют двойную мембрану, причем внутренняя мембрана свернута в множество уплощенных пузырьков, называемых тилакоидами. Внутри тилакоидов находятся пигменты, улавливающие свет. Процесс фотосинтеза можно разделить на две фазы: световую и темновую.

Световая фаза. Фотосинтез начинается с момента освещения хлоропласта видимым светом и включает реакции, непосредственно связанные с использованием света. Все фотосинтезирующие клетки содержат один или несколько классов зеленых пигментов, содержащих магний и называемых хлорофиллами. Молекулы хлорофилла способны улавливать свет в красной области спектра. Поглощение кванта света молекулой хлорофилла приводит к ее «возбуждению», то есть к переходу одного из электронов на более высокий энергетический уровень. Возбужденный электрон переносится на следующий компонент цепи переноса электронов, аналогичной дыхательной цепи. Значительная часть компонентов этой цепи представлена цитохромами (железосодержащие белки) и медьсодержащими белками. Сам процесс переноса электронов представляет собой последовательно происходящие окислительно-восстановительные реакции.

После того как электрон уходит с молекулы хлорофилла на следующий компонент цепи переноса электронов (хлорофилл при этом окисляется), происходит его восстановление за счет электронов, входящих в состав молекулы воды. При этом с участием специальных ферментов молекула воды распадается на электрон, переносимый к молекуле окисленного хлорофилла, протон и атомарный кислород. Этот процесс происходит с внутренней стороны мембраны тилакоида. Два атома кислорода объединяются в молекулу O 2 , которая путем диффузии покидает хлоропласт. Таким образом, кислород, являющийся продуктом фотосинтеза, образуется из воды.

Так же как и в дыхательной цепи, на некоторых этапах цепи переноса в хлоропластах осуществляется перенос электронов через мембрану совместно с протонами (то есть в виде атомов водорода), а затем пути протонов и электронов разделяются: протоны переносятся с одной стороны мембраны на другую, а электроны продолжают дальнейший путь по цепи переноса. Итоговым результатом такого процесса является создание градиента протонов: при этом внутреннее пространство тилакоида закисляется и обращенная внутрь часть мембраны становится положительно заряженной, а часть мембраны, обращенная в межмембранное пространство, становится заряженной отрицательно (межмембранное пространство защелачивается). Энергия, запасенная в виде градиента концентраций протонов, используется АТФ-синтазой для синтеза АТФ из АДФ и неорганического фосфата.

В конечном итоге электроны, переносимые по фотосинтетической цепи переноса электронов, включаются в окисленную форму никотинамидадениндинуклеотидфосфата, НАДФ + , восстанавливая последний до НАДФН. Мы уже упоминали, что пары НАД + /НАДН и НАДФ + /НАДФН представляют собой унифицированные окислительно-восстановительные пары соединений, используемые в различных биохимических реакциях в качестве окислителей или восстановителей.

Таким образом, в результате световой стадии фотосинтеза электроны, переносимые с возбужденной молекулы хлорофилла по цепи переноса электронов, обеспечивают, с одной стороны, создание градиента протонов, энергия которого запасается в виде терминальной фосфатной связи АТФ, а с другой стороны, обеспечивают образование восстановителя НАФН, который затем используется в темновой фазе фотосинтеза для образования углеводов из углекислого газа и воды.

Темновая фаза фотосинтеза. Энергия в виде АТФ и восстановительные эвиваленты в виде НАФН, образующиеся в фотосинтезирующих организмах на свету, используются в дальнейшем для синтеза углеводов, то есть для восстановления СO 2 до глюкозы и других Сахаров. Эти реакции могут протекать как на свету, так и в темноте, поэтому называются темновой фазой фотосинтеза. Суммарное уравнение, описывающее темновой процесс образования глюкозы из СO 2 , имеет следующий вид:

6СO 2 + 12НАДФН + 18АТФ + 12Н 2 O -> С 6 Н 12 O 6 + 12НАДФ + + 18 АДФ + 18Н 3 РO 4

Процесс синтеза глюкозы осуществляется в результате большого числа последовательных ферментативных реакций. В дальнейшем из глюкозы могут образовываться более сложные ди- и полисахариды, а также аминокислоты, жирные кислоты и другие органические соединения.

Значение фотосинтеза. Процесс фотосинтеза является основным процессом, в результате которого из неорганических соединений (двуокиси углерода и воды) осуществляется синтез органических соединений. Таким образом, фотосинтезирующие организмы (автотрофы) способны за счет энергии Солнца синтезировать органические вещества, необходимые для их роста и развития. Более того, сами фотосинтезирующие организмы или продукты их жизнедеятельности служат пищей для всех остальных членов биосферы (гетеротрофов). Таким образом, жизнь на Земле должна была бы прекратиться, не будь постоянного поступления энергии в виде солнечного излучения и фотосинтеза, который эту энергию использует.

Для того, чтобы расходовать запасенную энергию, организмы осуществляют деградацию питательных веществ, главным образом окислительную. Для протекания окислительных процессов используется кислород, при этом органические соединения превращаются в двуокись кислорода. Фотосинтез способствует сохранению равновесия в биосфере, восстанавливая СO 2 до органических соединений и выделяя в атмосферу молекулярный кислород. Только в результате появления организмов, способных производить кислород, могла возникнуть среда, пригодная для развития всех тех форм жизни, которые используют кислород.

Хемосинтез. Все автотрофные организмы делятся на две группы. Одна из них, называемая фототрофами, использует в качестве энергии свет. К ним относятся все фотосинтезирующие организмы. Кроме того, есть организмы, использующие в качестве источника энергии для синтеза органических соединений энергию окислительно-восстановительных реакций. Эти организмы называются хемотрофными, а процесс синтеза органических соединений за счет энергии химических реакций - хемосинтезом. К хемотрофам относятся некоторые бактерии, использующие энергию, образующуюся при окислении аммиака до азотной кислоты, азотистой кислоты до азотной (нитрифицирующие бактерии), а также сероводорода до серной кислоты (серобактерии) и двухвалентного железа до трехвалентного (железобактерии).

Пути повышения продуктивности сельскохозяйственных растений. Одна из важнейших задач, стоящих перед быстро растущим человечеством, - это повышение продуктивности растений, используемых в качестве пищевых продуктов. Эта задача в первую очередь связана с повышением продуктивности фотосинтеза. Для эффективного протекания фотосинтеза необходимо соблюдение определенных условий, а именно:

Обеспечение оптимальной интенсивности и длительности освещения растений, что в значительной степени определяется густотой посевов и расположением рядов растений по отношению к положению Солнца на небосводе. При выращивании растений в теплицах длительность светового дня можно увеличивать за счет освещения растений в темное время суток специальными (фито) лампами, которые дают свет с достаточной интенсивностью в красной области спектра;

Соблюдение оптимального температурного режима (для теплиц оптимальная составляет 20-25°);

Обеспечение оптимального режима полива;

Достаточное содержание минеральных компонентов в почве (внесение в почву удобрений);

Обеспечение нормального содержания в воздухе теплиц двуокиси углерода, поскольку снижение его концентрации тормозит фотосинтез, а увеличение - ингибирует дыхание растений;

Своевременная и эффективная борьба с заболеваниями растений.

Однако наиболее перспективными в настоящее время являются принципиально новые подходы, которые заключаются в создании с использованием методов генной инженерии новых разновидностей растений, характеризующихся высокой продуктивностью и устойчивостью как к заболеваниям, так и к различным неблагоприятным условиям.

Биосинтез белков

Белки являются важнейшими компонентами живого не столько потому, что составляют большую по массе часть клетки, но потому, что обеспечивают ее функциональную активность и уникальность. Практически все химические процессы, протекающие в клетке, осуществляются белками-ферментами. Каждая клетка имеет набор специфических белков, характерных именно для данной клетки. Он отличается как от набора, характерного для клеток другого организма, так и от набора, свойственного клеткам другой данного организма, поскольку в каждой клетке осуществляется синтез специфичных для нее белков. о том, какие белки должны синтезироваться в клетках данного организма, хранится в ядре, она записана в виде последовательности нуклеотидов в ДНК. Часть молекулы ДНК, последовательность нуклеотидов в которой определяет последовательность аминокислот в определенном белке, называется геном. В молекуле ДНК в зависимости от эволюционного пути, который прошел данный организм, может содержаться от сотен до десятков тысяч генов.

Код ДНК . Каким же образом последовательность нуклеотидов может определять последовательность аминокислот? Известно, что ДНК состоит из четырех видов нуклеотидов, то есть информация в ДНК записывается четырьмя буквами (А, Г, Т, Ц). Из математических расчетов вытекает, что для кодирования одной аминокислоты требуется более одного нуклеотида, поскольку в белках обнаруживается 20 различных аминокислот. Поскольку из 4 нуклеотидов можно сделать лишь 16 различных сочетаний по два нуклеотида (4 2 =16), что менее 20, то «слово», кодирующее определенную аминокислоту, должно состоять более чем из двух букв. Если записывать кодирующее «слово» сочетанием трех букв (нуклеотидов), то число различных вариантов будет составлять 4 3 = 64. Таким образом, комбинации из трех нуклеотидов (триплетный код) будет достаточно, чтобы закодировать 20 аминокислот (64 > 20).

Сочетания из трех нуклеотидов, кодирующие определенные аминокислоты, называются кодом ДНК, или генетическим кодом. В настоящее время код ДНК полностью расшифрован, то есть известно, какие конкретно триплетные сочетания нуклеотидов кодируют входящие в состав белка 20 аминокислот. Пользуясь комбинацией, состоящей из трех нуклеотидов, можно сделать значительно большее количество кодирующих «слов», чем необходимо для кодирования 20 аминокислот. Оказалось, что каждая аминокислота может кодироваться более чем одним триплетом, то есть генетический код вырожден. Так, например, аминокислота фенилаланин может кодироваться как последовательностью УУУ, так и последовательностью УУЦ. Только две аминокислоты (триптофан и метионин) кодируются одним триплетом. Нужно отметить, что термин «вырожденный» не означает «неточный», так как один триплет не может кодировать две аминокислоты.

Существенная особенность генетического кода заключается в том, что в нем отсутствуют сигналы, отделяющие одно кодирующее «слово» (его называют кодоном) от другого. Именно поэтому считывание информации должно начинаться с правильного места молекулы ДНК (РНК) и продолжаться последовательно от одного кодона к другому. В противном случае последовательность нуклеотидов окажется измененной во всех кодонах. Это подтверждается обнаружением мутаций, при которых из последовательности либо выпадает (делеция), либо встраивается в нее (вставка) один или два нуклеотида. При этих мутациях в результате сдвига считывания синтезируется дефектный белок. В том случае, если выпадает или встраивается три нуклеотида, синтезируется белок, который отличается от нормального тем, что в нем отсутствует одна аминокислота (в случае делеции трех нуклеотидов) или появляется дополнительная аминокислота (в случае вставки трех нуклеотидов).

Еще одна особенность генетического кода заключается в том, что три триплета (УАА, УАГ и УГА) кодируют не аминокислоты, а своеобразные «знаки препинания». Они являются стоп-сигналами, которые сигнализируют об окончании синтеза полипептидной цепи.

Генетический код универсален, то есть триплеты, кодирующие одну и ту же аминокислоту, одинаковы у всех живых существ: один и тот же кодон кодирует определенную аминокислоту как у человека, так и у вируса или растения. Таким образом, генетический язык одинаков для всех видов. Универсальность генетического кода свидетельствует о том, что он возник в процессе генетической эволюции почти в том виде, в котором существует и сегодня. Вырожденность кода затрагивает только третье основание кодона: так, например, серин кодируется триплетами УЦУ, УЦЦ, УЦА и УЦГ. Таким образом, кодирование определенной аминокислоты определяется главным образом двумя первыми буквами. Можно думать, что генетический код был сначала дуплетным и содержал информацию о 16 (или менее) аминокислотах.

Транскрипция. Синтез белка осуществляется на рибосомах, расположенных в цитоплазме клетки. В то же время информация о последовательности аминокислот в белке хранится в ДНК. Оказалось, что во время или перед началом синтеза определенного белка в ядре образуется так называемая матричная, или информационная РНК, являющаяся посредником, переносящим информацию с ДНК к рибосомам. Молекула информационной РНК (иРНК) синтезируется с использованием в качестве матрицы определенного участка ДНК (гена). Затем молекула иРНК покидает ядро и перемещается в цитоплазму. Связываясь с рибосомами, она, в свою очередь, служит матрицей, на которой происходит синтез белка.

Синтез иРНК осуществляется в ядре с помощью фермента, называемого ДНК-зависимой РНК-полимеразой. Вновь синтезированная иРНК имеет нуклеотидный состав, коплементарный нуклеотидному составу использованной ДНК с той лишь разницей, что остаткам аденина в ДНК-матрице соответствуют остатки урацила в синтезированной мРНК. Таким образом, информация, имеющаяся в гене, в процессе синтеза мРНК переписывается на мРНК. Этот процесс называется транскрипцией (переписыванием).

Процесс транскрипции, вместе с реакцией самоудвоения ДНК, которая называется репликацией, относят к реакциям матричного синтеза. Реакции матричного синтеза представляют собой реакции, которые идут с использованием матрицы. Матрица (от латинского матрикс - матка) представляет собой готовую структуру, в соответствии с которой осуществляется синтез новой структуры. При синтезе ДНК (репликации) и синтезе иРНК в качестве матрицы используется одна из цепей ДНК, на которой происходит образование комплементарной ей цепи. Таким образом, в результате реакций матричного синтеза образуются структуры, построенные по строго определенному плану. Реакции матричного синтеза характерны лишь для живой природы, в результате их осуществления становится возможным передача информации от одного поколения живых существ к другому (репликация), а также синтез молекул белков, в соответствии с информацией, заложенной в генетическом материале. Для синтеза белковых молекул необходимо осуществление двух типов реакций матричного синтеза: транскрипции, которая необходима для переноса генетической информации из ядра в. цитоплазму, и трансляции.

Трансляция. Термином трансляция (перевод) в биологии обозначают реакции, в результате которых в рибосомах с использованием в качестве матрицы информационной РНК осуществляется синтез полипептидной цепи. Полипептидная цепь удлиняется в процессе синтеза путем последовательного присоединения отдельных аминокислотных остатков, начиная с N-концевого остатка. Для того чтобы понять, каким образом осуществляется образование пептидной связи между соответствующими аминокислотами, необходимо рассмотреть структуру рибосом и транспортных РНК (тРНК), участвующих в процессе трансляции.

Рибосомы эукариот имеют диаметр около 220 А и молекулярную массу около 4 млн. дальтон. Рибосомы прокариот более мелкие. Каждая рибосома состоит из двух неравных субъединиц, причем субъединицы могут отделяться друг от друга. В состав каждой субъединицы входит рибосомная РНК и белок. Некоторые рибосомные белки выполняют каталитические функции, то есть являются ферментами.

Транспортная РНК. Молекулы транспортных РНК невелики, их молекулярная масса составляет 23 000 — 30 000 дальтон. Функция тРНК заключается в том, чтобы в ходе процесса синтеза полипептидной цепи переносить на рибосомы определенные аминокислоты, при этом каждая аминокислота переносится соответствующими транспортными тРНК. Все молекулы тРНК способны образовывать характерную конформацию - конформацию клеверного листа. Такая конформация молекулы тРНК возникает потому, что в ее структуре имеется значительное количество нуклеотидов (по 4-7 в одном участке), комплементарных друг другу. Внутримолекулярное спаривание таких нуклеотидов за счет образования водородных связей между комплементарными основаниями и приводит к образованию такой структуры. У верхушки клеверного листа располагается триплет нуклеотидов, который комплементарен соответствующему кодону иРНК. Этот триплет различен для тРНК, переносящих различные аминокислоты, и кодирует именно ту аминокислоту, которая переносится данной тРНК. Он называется антикодоном.

У основания клеверного листа находится участок, в котором связывается аминокислота. Связывание аминокислоты с тРНК осуществляется за счет образования связи между карбоксильной группой аминокислоты и ОН-группой остатка адениловой кислоты, располагающейся в концевой части молекул всех тРНК. Таким образом, молекула тРНК не только переносит определенную аминокислоту, она имеет в своей структуре запись о том, что она переносит именно эту аминокислоту, причем эта запись сделана на языке генетического кода.

Синтез белка. Рибосомы способны связывать иРНК, несущую информацию об аминокислотной последовательности синтезируемого белка, транспортные РНК, несущие аминокислоты, и, наконец, синтезируемую полипептидную цепь. Меньшая субъединица рибосомы связывает иРНК и тРНК, несущую первую (N-концевую) аминокислоту полипептидной цепи, после чего происходит связывание большой субъединицы с образованием функционирующей (работающей) рибосомы.

По мере сборки полипептидной цепи рибосома передвигается вдоль нитевидной молекулы тРНК. Одновременно на одной молекуле иРНК может находиться несколько рибосом, каждая из которых осуществляет синтез полипептидной цепи, закодированной этой тРНК. Чем дальше по цепи иРНК продвинулась рибосома, тем больший по длине фрагмент молекулы белка будет синтезирован. Когда рибосома достигает конца молекулы иРНК, синтез белка заканчивается, и рибосома с вновь синтезированным белком покидает молекулу иРНК. Сигнал об окончании синтеза полипептидной цепи подается тремя специальными кодонами, один из которых присутствует в терминальной части молекулы иРНК. Считывание информации с молекулы тРНК возможно только в одном направлении.

Еще в процессе синтеза вновь образованный конец полипептидной цепи может связываться со специальными белками шаперонами, обеспечивающими ее правильную укладку, а затем направляется к аппарату Гольджи, откуда белок транспортируется в то место, где он будет работать. Рибосома, которая освободилась от иРНК и синтезированной полипептидной цепи, диссоциирует на субъединицы, после чего большая субъединица, связавшись с любой иРНК, может связать меньшую субъединицу и образовать активную рибосому, способную начать синтез нового (или того же самого) белка.

Активный центр рибосомы, в котором осуществляется образование пептидной связи между двумя соседними аминокислотами, устроен таким образом, что в нем одновременно могут находиться два соседних кодона (триплета) иРНК. На первом этапе происходит связывание тРНК с информационной РНК за счет взаимодействия кодон-антикодон. Поскольку антикодон, расположенный на тРНК, и кодон, находящийся на иРНК, комплементарны, между входящими в их состав азотистыми основаниями образуются водородные связи. На втором этапе аналогичным образом осуществляется связывание с соседним кодоном второй молекулы тРНК. При этом молекулы тРНК ориентируются в активном центре рибосомы таким образом, что С=0 группа первого аминокислотного остатка, связанного с первой тРНК, оказывается поблизости от свободной аминогруппы аминокислотного остатка, входящего в состав второй транспортной тРНК. Таким образом, за счет взаимодействия кодон-антикодон между последовательно расположенными кодонами иРНК и соответствующими антикодонами тРНК рядом оказываются именно те аминокислоты, которые последовательно закодированы в иРНК.

На следующем этапе в результате взаимодействия свободной аминогруппы, входящей в состав аминокислотного остатка вновь пришедшей тРНК, с этерифицированной карбоксильной группой С-концевого аминокислотного остатка первой аминокислоты образуется пептидная связь. Реакция осуществляется путем замещения, причем уходящей группой является молекула первой тРНК. В результате такого замещения удлинившаяся тРНК, несущая уже дипептид, оказывается связанной с рибосомой. Для катализа этой реакции требуется фермент, называемый пептидилтрансферазой, который входит в состав большей субъединицы рибосомы.

На последнем этапе связанный с тРНК пептид передвигается с участка, в котором связывается аминокислота, в участок, в котором связывается образующийся пептид. Этот процесс перемещения является результатом изменения конформации рибосомы. Одновременно с перемещением синтезирующейся пептидной цепи происходит перемещение рибосомы вдоль иРНК, при этом в активном центре рибосомы оказывается следующий кодон иРНК, после чего описанные выше события повторяются.

Синтез белка осуществляется с очень большой скоростью: пептид, состоящий из 100 аминокислот, синтезируется примерно за 1 минуту.

Мы уже упоминали, что все процессы синтеза, в результате которых из более простых молекул образуются более сложные, осуществляются с затратой энергии. Биосинтез белка представляет собой цепь реакций, протекающих с затратой энергии. Так, для связывания одной аминокислоты с тРНК требуется энергия двух макроэргических фосфатных связей. Кроме того, при образовании одной пептидной связи используется энергия еще одной макроэргической фосфатной связи. Таким образом, для образования одной пептидной связи в молекуле белка требуется такое количество энергии, которое запасено в трех макроэргических связях молекулы АТФ.


Метаболизм как основа жизнедеятельности клетки

Под метаболизмом понимают постоянно происходящий в клетках живых организмов обмен веществ и энергии. Одни соединения, выполнив свою функцию, становятся ненужными, в других возникает насущная потребность. В различных процессах метаболизма из простых веществ при участии ферментов синтезируются высокомолекулярные соединения, в свою очередь сложные молекулы расщепляются на более простые.

Реакции биологического синтеза называются анаболическими (греч. anabole подъем), а их совокупность в клетке - анаболизмом, или пластическим обменом (греч. plastos вылепленный, созданный).

В клетке протекает огромное количество процессов синтеза: липидов в эндоплазматической сети, белков на рибосомах, полисахаридов в комплексе Гольджи эукариот и в цитоплазме прокариот, углеводов в пластидах растений. Структура синтезируемых макромолекул обладает видовой и индивидуальной специфичностью. Набор характерных для клетки веществ соответствует последовательности нуклеотидов ДНК, составляющих генотип. Для обеспечения реакций синтеза клетке требуются существенные затраты энергии, получаемой при расщеплении веществ.

Совокупность реакций расщепления сложных молекул на более простые носит название катаболизма (греч. katabole разрушение), или энергетического обмена. Примерами таких реакций является расщепление липидов, полисахаридов, белков и нуклеиновых кислот в лизосомах, а также простых углеводов и жирных кислот в митохондриях.

В результате процессов катаболизма высвобождается энергия. Существенная ее часть запасается в виде высокоэнергетичных химических связей АТФ. Запасы АТФ позволяют организму быстро и эффективно обеспечивать различные процессы жизнедеятельности.

Молекулы белков функционируют в организме от нескольких часов до нескольких дней. За этот период в них накапливаются нарушения, и белки становятся непригодными для выполнения своих функций. Они расщепляются и заменяются на вновь синтезируемые. Требуют постоянного обновления и сами клеточные структуры.

Пластический и энергетический обмены неразрывно взаимосвязаны. Процессы расщепления осуществляют энергетическое обеспечение процессов синтеза, а также поставляют необходимые для синтеза строительные вещества. Правильный обмен веществ поддерживает постоянство химического состава биологических систем, их внутренней среды. Способность организмов сохранять внутренние параметры неизменными носит название гомеостаза. Процессы метаболизма происходят в соответствии с генетической программой клетки, реализуя ее наследственную информацию.

Энергетический обмен в клетке. Синтез АТФ

Человек и животные получают энергию за счет окисления органических соединений, поступающих с пищей. Биологическое окисление веществ - это, по сути, медленное горение. Конечные продукты сгорания дров (целлюлозы) - углекислый газ и вода. Полное окисление органических веществ (углеводов и липидов) в клетках также происходит до воды и углекислого газа. В отличие от горения, процесс биологического окисления происходит постепенно. Высвобождающаяся энергия также постепенно запасается в виде химических связей синтезируемых соединений. Некоторая ее часть рассеивается в клетках, поддерживая необходимую для жизнедеятельности температуру.

Синтез АТФ происходит главным образом в митохондриях (у растений еще и в хлоропластах) и обеспечивается в основном энергией, выделяющейся при расщеплении глюкозы, но могут использоваться и другие простые органические соединения - сахара, жирные кислоты и пр.

Гликолиз. Процесс расщепления глюкозы в живых организмах носит название гликолиза (греч. glykys сладкий + lysis расщепление). Рассмотрим основные его этапы.

На первой, предварительной стадии в лизосомах происходит образование простых органических молекул путем расщепления ди- и полисахаридов. Выделяющееся при этом небольшое количество энергии рассеивается в виде тепла.

Второй этап гликолиза происходит в цитоплазме без участия кислорода и называется анаэробным (бескислородным - греч. ana без + aer воздух) гликолизом - неполным окислением глюкозы без участия кислорода.

Бескислородный гликолиз представляет собой сложный многоступенчатый процесс из десяти последовательных реакций. Каждая реакция катализируется специальным ферментом. В итоге глюкоза расщепляется до пировиноградной кислоты (ПВК):

С6Н12О6(глюкоза) + 2Н3РО4 + 2АДФ = 2С3Н4О3(ПВК) + 2АТФ + 2Н2О

Глюкоза в этом процессе не только расщепляется, но и окисляется (теряет атомы водорода). В мышцах человека и животных две молекулы ПВК, приобретая атомы водорода, восстанавливаются в молочную кислоту С3Н6О3. Этим же продуктом заканчивается гликолиз у молочнокислых бактерий и грибков, применяемый для приготовления кислого молока, простокваши, кефира, а также при силосовании кормов в животноводстве. Процесс превращения ПВК в клетках микроорганизмов и растений в устойчивые конечные продукты называют брожением.

Так, дрожжевые грибки расщепляют ПВК на этиловый спирт и углекислый газ. Этот процесс, называемый спиртовым брожением, используют для приготовления кваса, пива и вина. Брожение других микроорганизмов завершается образованием ацетона, уксусной кислоты и т.д.

Главным результатом анаэробного гликолиза во всех организмах является образование двух молекул АТФ. Высвобождающаяся при расщеплении глюкозы энергия относительно невелика - 200 кДж/моль. Высокоэнергетичные связи АТФ запасают 40% этой величины. Остальные 60% рассеиваются в виде тепла. Основной выход энергии и молекул АТФ происходит на третьем, кислородном этапе гликолиза, называемом еще аэробным дыханием.

Кислородный гликолиз. При наличии достаточного количества кислорода дальнейший процесс расщепления ПВК происходит уже не в цитоплазме, а в митохондриях, и включает несколько десятков последовательных реакций, каждая из которых обслуживается своим комплексом ферментов.

Молекулы ПВК под действием ферментов (и кофермента НАД - никотинамидадениндинуклеотида) поэтапно окисляются сначала до уксусной кислоты, а затем, в так называемом цикле Кребса (или трикарбоновых кислот), до углекислого газа и воды (медленное горение). В процессе окисления образуются сложные молекулярные соединения с присоединенными к ним атомами водорода. Молекулы-переносчики подхватывают и перемещают электроны этих атомов по длинной цепи ферментов от одного к другому. На каждом шаге электроны вступают в окислительно-восстановительные реакции и отдают свою энергию, которая идет на перемещение протонов на внешнюю сторону внутренней мембраны митохондрии.

В результате оставшиеся протоны и перемещенные электроны оказываются на разных сторонах внутренней мембраны. На мембране создается разность потенциалов.

Фермент, синтезирующий АТФ (АТФ-синтетаза), встроен во внутреннюю мембрану по всей ее толщине. Этот фермент имеет характерную особенность: небольшой каналец в молекулярной структуре. При накоплении на мембране разности потенциалов примерно в 200 мВ ионы Н + начинают протискиваться через каналец в молекуле АТФ-синтетазы. В процессе энергичного продвижения ионов через фермент происходит синтез АТФ из АДФ с участием фосфорной кислоты.

В химических реакциях кислородного гликолиза освобождается большое количество энергии - 2600 кДж/моль. Существенная ее часть (55%) запасается в высокоэнергетичных связях образующихся молекул АТФ. Остальные 45% рассеиваются в виде тепла (поэтому при выполнении физической работы нам жарко). Итоговое уравнение кислородной стадии выглядит следующим образом:

2С3Н6О3(молочн.кислота) + 6О2 + 36Н3РО4 + 36АДФ = 6СО2 + 42Н2О + 36АТФ

Таким образом, кислородное расщепление резко увеличивает эффективность энергетического обмена и играет основную роль в аккумулировании энергии. Если гликолиз без участия кислорода дает только 2 молекулы АТФ, то кислородный гликолиз обеспечивает синтез 36 молекул АТФ. В итоге в полном цикле гликолиза на каждую молекулу глюкозы образуется 38 молекул АТФ.

При среднесуточных энергетических затратах в 10 тыс. кДж в организме человека ежедневно синтезируется около 170 кг АТФ, а содержится всего около 50 г АТФ, следовательно, возобновление запаса происходит с частотой 3400 раз в сутки!

При интенсивной физической работе клетки организма не успевают насытиться кислородом, и расщепление глюкозы ограничивается бескислородным гликолизом. В результате быстро накапливается молочная кислота - токсичное для нервных и мышечных клеток соединение (вспомним мышечные боли после тяжелой работы). Появление молочной кислоты возбуждает дыхательный центр и заставляет нас усиленно дышать. Насыщение клеток кислородом позволяет организму возобновить процесс кислородного расщепления, обеспечивающий необходимое количество энергии в виде молекул АТФ. Наступает "второе дыхание". Гепардам после интенсивного бега требуется продолжительный отдых, порой они оказываются не в состоянии защитить свою добычу от менее сильных хищников. В большой скорости восстановления кислородного запаса, а значит, в лучшей приспособленности к длительной мышечной активности - преимущество многих мелких животных.

Митохондрии способны использовать для синтеза АТФ не только расщепление глюкозы. В их матриксе содержатся также ферменты, расщепляющие жирные кислоты. Особенностью этого цикла является большой энергетический выход - 51 молекула АТФ на каждую молекулу жирной кислоты. Не случайно медведи и другие животные, впадая в спячку, запасают именно жиры. Любопытно, что часть запасаемого жира имеет у них бурый цвет. Такие жировые клетки содержат множество митохондрий необычного строения: их внутренние мембраны пронизаны порами. Ионы водорода свободно проходят через эти поры, и синтез АТФ в клетках бурого жира не происходит. Вся энергия, освобождающаяся в процессе кислородного расщепления жирных кислот, выделяется в виде большого количества тепла, согревающего животных во время долгой зимней спячки.

Бурый жир составляет не более 1-2% массы тела, но повышает производство тепла до 400 Вт на каждый килограмм веса (теплопроизводство человека в состоянии покоя составляет 1 Вт/кг). Запасают жир и верблюды. При постоянном дефиците влаги это вдвойне выгодно, поскольку расщепление жиров дает еще и большое количество воды.

Кроме глюкозы и жирных кислот, митохондрии способны расщеплять аминокислоты, но они - дорогое топливо. Аминокислоты являются важным строительным материалом, из них организм синтезирует свои белки. К тому же использование аминокислот для синтеза АТФ требует предварительного удаления аминогруппы NН2 с образованием токсичного аммиака. Белки и составляющие их аминокислоты используются клеткой для получения энергии только в крайнем случае.

Этиловый спирт тоже может использоваться митохондриями для синтеза АТФ. Но спирт как "топливо" имеет для организма человека свои недостатки, постоянное употребление алкоголя приводит к тяжелым расстройствам, например, к жировому перерождению печени - циррозу.

1. Как связаны катаболизм, анаболизм и гомеостаз?
2. Что называют брожением? Приведите примеры.
3. Опишите ход кислородного гликолиза. В чем его основной результат?
4. Почему при выполнении физической работы нам жарко?
5. Каковы функции бурого жира?

Фотосинтез - превращение энергии света в энергию химических связей

Автотрофные организмы . В отличие от человека и животных, все зеленые растения и часть бактерий способны синтезировать органические вещества из неорганических соединений. Такой тип обмена веществ называется автотрофным (греч. autos сам + trophe пища). В зависимости от вида энергии, используемой автотрофами для синтеза органических молекул, их делят на фототрофов и хемотрофов. Фототрофы используют энергию солнечного света, а хемотрофы - химическую энергию, высвобождающуюся при окислении ими различных неорганических соединений.

Зеленые растения являются фототрофами. Их хлоропласты содержат хлорофилл, позволяющий растениям осуществлять фотосинтез - преобразование энергии солнечного света в энергию химических связей синтезируемых органических соединений. Из всего спектра солнечного излучения молекулы хлорофилла поглощают красную и синюю часть, а зеленая составляющая достигает сетчатки наших глаз. Поэтому большинство растений мы видим зелеными.
Для осуществления фотосинтеза растения поглощают из атмосферы углекислый газ, а из водоемов и почвы - воду, неорганические соли азота и фосфора. Итоговое уравнение фотосинтеза выглядит довольно просто:

6СО2 + 6Н2О = С6Н12О6(глюкоза) + 6О2,

но всем хорошо известно, что при смешивании углекислого газа и воды глюкоза не образуется. Фотосинтез - сложный многоступенчатый процесс, для прохождения которого необходим не только солнечный свет и хлорофилл, но и ряд ферментов, энергия АТФ и молекулы-переносчики. Выделяют две фазы фотосинтеза - световую и темновую.

С в е т о в а я ф а з а фотосинтеза начинается с освещения растений светом. Солнечные фотоны, передавая свою энергию молекуле хлорофилла, переводят молекулу в возбужденное состояние: ее электроны, получая дополнительную энергию, переходят на более высокие орбиты. Отрыв таких возбужденных электронов может происходить значительно легче, чем невозбужденных. Молекулы-переносчики захватывают их и перемещают на другую сторону мембраны тилакоида.

Молекулы хлорофилла восполняют потерю электронов, отрывая их от молекул воды. В результате вода расщепляется на протоны и молекулярный кислород:

2Н2О – 4е = 4Н+ + О2

Процесс расщепления молекул воды до молекулярного кислорода, протонов и электронов под действием света называют фотолизом. Молекулярный кислород легко диффундирует сквозь мембраны тилакоидов и выделяется в атмосферу. Протоны неспособны к проникновению через мембрану и остаются внутри.

Таким образом, снаружи мембраны накапливаются электроны, доставленные молекулами-переносчиками с возбужденных молекул хлорофилла, а внутри - протоны, образовавшиеся в результате фотолиза воды. Возникает разность потенциалов. В мембраны тилакоидов хлоропласта, так же как и во внутренние мембраны митохондрий, встроены ферменты-синтетазы, осуществляющие синтез АТФ. В молекулярной структуре синтетаз растений также имеется каналец, через который могут проходить протоны. При достижении на мембране критической разности потенциалов протоны, влекомые силой электрического поля, протискиваются по канальцу АТФ-синтетазы, затрачивая энергию на синтез АТФ. Соединяясь на другой стороне мембраны с электронами, протоны образуют атомарный водород.

Фотосинтез в хлоропластах весьма эффективен: он дает в 30 раз больше АТФ, чем кислородный гликолиз в митохондриях тех же растений.

Таким образом, во время световой фазы фотосинтеза происходят следующие главные процессы: выделение в атмосферу свободного кислорода, синтез АТФ и образование атомарного водорода.

Протекание дальнейших реакций может происходить и в темноте, потому носит название темновой фазы.

Т е м н о в а я ф а з а. Реакции этой фазы происходят в строме хлоропласта при участии атомарного водорода и АТФ, образовавшихся в световой фазе, а также ферментов, восстанавливающих СО2 до простого сахара - триозы (глицеральдегида) - и синтезирующих из нее глюкозу:

6СО2 + 24Н = С6Н12О6(глюкоза) + 6Н2О

Для образования одной молекулы глюкозы требуется 18 молекул АТФ. Комплекс реакций темновой фазы, осуществляемых ферментами (и коферментом НАД), носит название цикла Кальвина.

Кроме глюкозы, из триозы могут синтезироваться жирные кислоты, аминокислоты и пр. Углеводы и жирные кислоты далее транспортируются в лейкопласты, где из них формируются запасные питательные вещества - крахмал и жиры.

С наступлением темноты растения продолжают процесс фотосинтеза, используя запасенные на свету соединения. Когда этот запас исчерпывается, прекращается и фотосинтез. В ночной темноте растения напоминают по типу обмена веществ животных: они поглощают кислород из атмосферы (дышат) и окисляют при помощи его запасенные днем питательные вещества. На дыхание растения используют в 20-30 раз меньше кислорода, чем выделяют в атмосферу в процессе фотосинтеза.

Количество энергии, производимой растениями, значительно превышает количество тепла, выделяющегося при сжигании всем населением планеты горючих полезных ископаемых. Ежегодно растительность планеты дает 200 млрд. т кислорода и 150 млрд. т органических соединений, необходимых человеку и животным.

Хемосинтез . Большинство бактерий лишены хлорофилла. Некоторые из них являются хемотрофами: для синтеза органических веществ они используют не энергию света, а энергию, высвобождающуюся при окислении неорганических соединений. Такой способ получения энергии и синтеза органических веществ назвали хемосинтезом (греч. chemia химия). Явление хемосинтеза открыто в 1887 г. русским микробиологом С. Н. Виноградским.

Н и т р и ф и ц и р у ю щ и е б а к т е р и и. В корневищах растений, главным образом, бобовых, живут особые клубеньковые бактерии. Они способны усваивать недоступный растениям атмосферный азот и обогащать почву аммиаком. Нитрифицирующие бактерии окисляют аммиак клубеньковых бактерий до азотистой кислоты и далее - азотистую до азотной. В результате растения получают соли азотной кислоты, необходимые для синтеза аминокислот и азотистых оснований.

В о д о р о д н ы е б а к т е р и и также широко распространены в почвах. Они окисляют молекулы водорода, образующиеся в результате бескислородного окисления органических останков различными микроорганизмами:

2Н2 + О2 = 2Н2О

Ж е л е з о б а к т е р и и используют энергию, высвобождающуюся при окислении двухвалентного железа до трехвалентного (закисные соли до окисных).

С е р о б а к т е р и и обитают в болотах и "питаются" сероводородом. В результате окисления сероводорода выделяется необходимая для жизнедеятельности бактерий энергия и накапливается сера. При окислении серы до серной кислоты высвобождается еще часть энергии. Суммарный выход энергии составляет существенную величину - 666 кДж/моль. Огромное количество серобактерий обитает в Черном море. Его воды, начиная со стометровой глубины, насыщены сероводородом.

Гетеротрофный тип обмена веществ. Человек и животные не способны синтезировать необходимые для жизнедеятельности органические вещества из неорганических и вынуждены поглощать их с пищей. Такие организмы называют гетеротрофами (греч. heteros другой). К гетеротрофам относятся также большинство бактерий и грибы. Вещества, поступившие с пищей, разлагаются в организмах животных на простые углеводы, аминокислоты, нуклеотиды, из которых далее синтезируются высокомолекулярные соединения, необходимые для конкретного вида существ в конкретной фазе жизненного цикла. Часть поступивших с пищей молекул расщепляется до конечных продуктов, а высвобождающаяся энергия используется в процессах жизнедеятельности. Некоторое количество энергии рассеивается в виде теплоты, служащей для поддержания температуры тела.

Многие одноклеточные водоросли имеют миксотрофное (смешанное) питание. На свету они фотосинтезируют, а в темноте переходят к фагоцитозу, т.е. становятся гетеротрофами.

1. Какова функция фотосинтеза в организмах растений?
2. В чем состоит основное предназначение световой и темновой фаз?
3. Опишите обмен веществ растений в ночное время.
3. Чем отличаются хемотрофы от фототрофов, в чем их сходство? Приведите примеры хемотрофов.
4. Отличается ли человек от растений по типу обмена веществ, кто такие гетеротрофы?

Пластический обмен.Биосинтез белков. Синтез иРНК

В процессах метаболизма реализуется наследственная информация. Клетка синтезирует только те вещества, которые записаны в ее генетической программе. Каждой группе клеток присущ свой комплекс химических соединений. Среди них особенно важными для организма являются белки.

Многие функции и признаки организма определяются его набором белков. Белки-ферменты расщепляют пищу, отвечают за поглощение и выделение солей, синтезируют жиры и углеводы, производят множество других биохимических превращений. Белки определяют цвет глаз, рост - словом, внешнюю специфичность организмов. Большинство белков, выполняющих одни и те же функции, несколько различны даже у особей одного и того же вида (к примеру, белки групп крови). Но некоторые однофункциональные белки могут иметь сходное строение у далеких групп организмов (к примеру, инсулин собаки и человека).

В процессе жизнедеятельности белковые молекулы постепенно разрушаются, теряют свою структуру - денатурируют. Их активность падает, и клетки заменяют их новыми. В организмах постоянно происходит синтез необходимых белков.

иосинтез белковых молекул - сложный ферментативный процесс, начинающийся в ядре и заканчивающийся на рибосомах. Центральную функцию в нем выполняют носители генетической информации - нуклеиновые кислоты ДНК и РНК.

Генетический код. Последовательность нуклеотидов ДНК задает последовательность аминокислот в белках - их первичную структуру. Молекулы ДНК являются матрицами для синтеза всех белков.

Отрезок ДНК, несущий информацию о первичной структуре конкретного белка, называют геном. Соответствующую последовательность нуклеотидов - генетическим кодом белка.

Идею о том, что наследственная информация записана на молекулярном уровне, а синтез белков идет по матричному принципу, впервые высказал еще в 1920-х годах русский биолог Н. К. Кольцов. В настоящее время код ДНК полностью расшифрован. В этом заслуга известных ученых: Г. Гамова (1954), а также Ф. Крика, С. Очоа, М. Ниренберга, Р. Холи и К. Хорана (1961-65). Значительную часть свойств генетического кода установил английский физик Ф. Крик, исследуя бактериофагов.

К о д т р и п л е т е н . Каждая аминокислота в генетическом коде задается последовательностью трех нуклеотидов - триплетом, или кодоном. Различных нуклеотидов в ДНК четыре, следовательно, теоретически возможных кодонов - 64 (43). Большинству аминокислот соответствует от 2 до 6 кодонов - код, как говорят, вырожден. Чем чаще аминокислота встречается в белках, тем, как правило, большим числом кодонов она кодируется. Оставшиеся три кодона вместе с кодоном метионина (АУГ) служат знаками препинания при считывании информации - указывают начало и конец матриц конкретных белков. Если белок имеет несколько полимерных цепей (образующих отдельные глобулы), то знаки препинания выделяют полипептидные звенья. Считывание каждого звена происходит непрерывно, без знаков препинания и пропусков - триплет за триплетом.

К о д о д н о з н а ч е н. Кроме триплетности, генетический код наделен рядом других характерных свойств. Его кодоны не перекрываются, каждый кодон начинается с нового нуклеотида, и ни один нуклеотид не может прочитываться дважды. Любой кодон соответствует только одной аминокислоте.

К о д у н и в е р с а л е н. Генетическому коду свойственна универсальность для всех организмов на Земле. Одинаковые аминокислоты кодируются одними и теми же триплетами нуклеотидов у бактерий и слонов, водорослей и лягушек, черепах и лошадей, птиц и даже человека. Несколько отличаются (на 1-5 кодонов) только коды митохондрий некоторых организмов, ряда дрожжей и бактерий.

Ошибка хотя бы в одном триплете приводит к серьезным нарушениям в организме. У больных серповидной анемией (их эритроциты имеют не дисковую, а серповидную форму) из 574 аминокислот белка гемоглобина одна аминокислота заменена другой в двух местах. В результате белок имеет измененную третичную и четвертичную структуру. Нарушенная геометрия активного центра, присоединяющего кислород, не позволяет гемоглобину эффективно справляться со своей задачей - связывать кислород в легких и снабжать им клетки организма.

Транскрипция. Синтез белка происходит в цитоплазме на рибосомах. Генетическую информацию от хромосом ядра к месту синтеза переносят иРНК:

ДНК - иРНК - белок

Информационная РНК синтезируется на отрезке одной из нитей ДНК как на матрице, хранящей информацию о первичной структуре конкретного белка или группы белков, выполняющих одну функцию. В основе синтеза лежит принцип комплементарности: напротив Цднк встает Грнк, напротив Гднк - Црнк, напротив Аднк - Урнк, напротив Тднк - Арнк. Затем мономерные звенья связываются в полимерную цепь. Таким образом, иРНК становится точной копией второй нити ДНК (с учетом замены Т- У). Молекула иРНК имеет одноцепочечную структуру, она в сотни раз короче ДНК.

Процесс перенесения генетической информации на синтезируемую иРНК носит название транскрипции. Перед началом каждого гена или группы однофункциональных генов расположена последовательность нуклеотидов, называемая инициатором (содержит кодон АУГ). В этой последовательности есть участок (промотор) для присоединения фермента РНК-полимеразы, осуществляющего транскрипцию. Полимераза распознает промотор благодаря химическому сродству. В конце матрицы синтеза находится стоп-кодон (один из трех в таблице), или терминатор.

В ходе транскрипции РНК-полимераза в комплексе с другими ферментами разрывает водородные связи между азотистыми основаниями двух нитей ДНК, частично раскручивает ДНК и производит синтез иРНК по принципу комплементарности. На одной ДНК "работают" сразу несколько полимераз.

Готовая молекула иРНК после небольшой перестройки связывается в комплекс со специальными белками и транспортируется ими через ядерную оболочку на рибосомы. Эти белки выполняют и другую функцию - они защищают иРНК от действия различных ферментов цитоплазмы. В прокариотической клетке ДНК не отделена от цитоплазмы, и синтез белков рибосомы начинают еще во время транскрипции.

Транспортные РНК . Необходимые для синтеза белков аминокислоты всегда имеются в составе цитоплазмы. Они образуются в процессе расщепления лизосомами белков. Транспортные РНК связывают аминокислоты, доставляют их на рибосомы и производят точную пространственную ориентацию аминокислот на рибосоме.

Рассмотрим устройство тРНК, позволяющее ей успешно выполнять свои сложные функции. В цепочке, состоящей из 70-90 звеньев, имеется 4 пары комплементарных отрезков из 4-7 нуклеотидов - А, Б, В и Г. Комплементарные участки связываются водородными связями попарно (как в молекуле ДНК). В результате нить тРНК "слипается" в четырех местах с образованием петлистой структуры, напоминающей лист клевера. В верхушке "листа" располагается триплет, код которого комплементарен кодону иРНК, соответствующему транспортируемой аминокислоте. Так, если в иРНК код аминокислоты валина ГУГ, то на вершине валиновой тРНК ему будет соответствовать триплет ЦАЦ. Комплементарный триплет в тРНК называют антикодоном.

Специальный фермент распознает антикодон тРНК, присоединяет к "черенку листа" определенную аминокислоту (в нашем примере - валин), и затем тРНК перемещает ее к рибосоме. Каждая тРНК транспортирует только свою аминокислоту.

1. Какая группа органических соединений определяет основные свойства организмов? Докажите.
2. Что такое генетический код? Перечислите его основные свойства.
3. Как происходит транскрипция? Какой принцип лежит в основе этого процесса? Каковы особенности протекания транскрипции у прокариот?
4. В чем состоит функция иРНК?
5. Опишите строение и функции тРНК.


Страница 1 - 1 из 2
Начало | Пред. | 1 | След. | Конец | Все
© Все права защищены

1. Дайте определения понятий.
Метаболизм – набор химических реакций, которые возникают в живом организме для поддержания жизни.
Энергетический обмен – процесс метаболического распада, разложения на более простые вещества или окисления какого-либо вещества, обычно протекающий с высвобождением энергии в виде тепла и в виде АТФ.
Пластический обмен – совокупность всех процессов биосинтеза, протекающих в живых организмах.

2. Заполните таблицу.

3. Изобразите схематично молекулу АТФ. Обозначьте ее части. Укажите расположение макроэргических связей. Напишите полное название этой молекулы.
АТФ – аденозинтрифосфорная кислота

4. К какому классу органических веществ относится АТФ? Почему вы сделали такой вывод?
Нуклеотид, так как состоит из аденина, рибозы и трех остатков фосфорной кислоты.

5. Пользуясь материалом § 3.2, заполните таблицу.


6. Какова биологическая роль ступенчатого характера энергетического обмена?
Постепенное выделение энергии, идущее в ходе энергетического обмена, позволяет более рационально использовать и запасать энергию. При разовом выделении такого числа энергии большая ее часть просто не успела бы соединиться с АДФ и выделилась бы как тепло, что означает большие потери для организма.

7. Объясните, почему кислород необходим большинству современных организмов. В результате какого процесса в клетках образуется углекислый газ?
Кислород необходим для дыхания. При наличии кислорода органические вещества при дыхании полностью окисляются до углекислого газа и воды.

8. Как повлияло накопление в атмосфере Земли кислорода на степень интенсивности процессов жизнедеятельности обитателей нашей планеты?
Кислород оказывает глубокое влияние на организм в целом, повышая общую энергию жизнедеятельности обитателей нашей планеты. Возникли и эволюционировали новые организмы.

9. Вставьте пропущенные слова.
Реакции пластического обмена идут с поглощением энергии.
Реакции энергетического обмена идут с выделением энергии.
Подготовительный этап энергетического обмена осуществляется в ЖКТ и лизосомах
клетки.
Гликолиз протекает в цитоплазме.
Во время подготовительного этапа белки под действием пищеварительных ферментов превращаются в аминокислоты.

10. Выберите правильный ответ.
Тест 1.
Какая из аббревиатур обозначает носителя энергии в живой клетке?
3) АТФ;

Тест 2.
На подготовительном этапе энергетического обмена белки распадаются до:
2) аминокислот;

Тест 3.
В результате бескислородного окисления в клетках животных при недостатке кислорода образуется:
3) молочная кислота;

Тест 4.
Энергия, которая выделяется в реакциях подготовительного этапа энергетического обмена:
2) рассеивается в виде тепла;

Тест 5.
Гликолиз обеспечивают ферменты:
3) цитоплазмы;

Тест 6.
При полном окислении четырех молекул глюкозы образуется:
4) 152 молекулы АТФ.

Тест 7.
Для наиболее быстрого восстановления работоспособности при усталости в период подготовки к экзамену лучше всего съесть:
3) кусок сахара;

11. Составьте синквейн к термину «метаболизм».
Метаболизм
Пластический и энергетический.
Синтезирует, разрушает, превращает.
Набор химических реакций в живом организме для поддержания жизни.
Обмен веществ.

12. Скорость обмена веществ непостоянна. Укажите некоторые внешние и внутренние причины, которые, по вашему мнению, способны изменять скорость обмена веществ.
Внешние – температура окружающей среды, физические нагрузки, масса тела.
Внутренние – уровень гормонов в крови, состояние нервной системы (угнетение или возбуждение).

13. Вы знаете, что существуют аэробные и анаэробные организмы. А кто такие факультативные анаэробы?
Это организмы, энергетические циклы которых проходят по анаэробному пути, но способные существовать при доступе кислорода, в отличие от облигатных анаэробов, для которых кислород губителен.

14. Объясните происхождение и общее значение слова (термина), опираясь на значение корней, его составляющих.


15. Выберите термин и объясните, насколько его современное значение соответствует первоначальному значению его корней.
Выбранный термин – гликолиз.
Соответствие: термин соответствует, но дополнен. Современное определение гликолиза, это не просто «расщепление сладкого», а процесс окисления глюкозы, при котором из одной ее молекулы образуются две молекулы ПВК, осуществляемый последовательно за несколько ферментативных реакций и сопровождающийся запасанием энергии в форме АТФ и NADH.

16. Сформулируйте и запишите основные идеи § 3.2.
Для любого организма характерен обмен веществ – набор хим. реакций для поддержания жизни. Энергетический обмен – процесс разложения на более простые вещества, протекающий с высвобождением энергии в виде тепла и в виде АТФ. Пластический обмен – совокупность всех процессов биосинтеза, протекающих в живых организмах.
Молекула АТФ – универсальный поставщик энергии в клетках.
Энергетический обмен протекает в 3 стадии: подготовительный этап (образуется глюкоза и тепло), гликолиз (образуется ПВК, 2 молекулы АТФ и тепло) и кислородный, или клеточное дыхание, (образуется 36 молекул АТФ и углекислый газ).



Рассказать друзьям