Энергия электромагнита. Энергия магнитного поля определение

💖 Нравится? Поделись с друзьями ссылкой

Мы уже много раз показывали, что электромагнитное поле обладает энергией. Значит, распространение электромагнитных волн связано с переносом энергии (подобно тому, как распространение упругих волн в веществе связано с переносом механической энергии). Сама возможность обнаружения ЭМВ указывает на то, что они переносят энергию.

Для характеристики переносимой волной энергии русским ученым Н.А. Умовым были введены понятия о скорости и направлении движения энергии, о потоке энергии. Спустя десять лет после этого, в 1884 г., английский ученый Джон Пойнтинг описал процесс переноса энергии с помощью вектора плотности потока энергии .

Введем вектор - приращение плотности электромагнитной энергии, где сама величина w определяется интегралом:

Объемная плотность энергии w электромагнитной волны складывается из объемных плотностей и электрического и магнитного полей:

Учитывая, что , получим, что плотность энергии электрического и магнитного полей в каждый момент времени одинакова, т.е. . Поэтому

Умножив плотность энергии w на скорость υ распространения волны в среде, получим модуль плотности потока энергии поток энергии через единичную площадку, перпендикулярную направлению распространения волны в единицу времени :

. (6.4.1)

Так как векторы и взаимно перпендикулярны и образуют с направлением распространения волны правовинтовую систему, то направление вектора совпадает с направлением переноса энергии, а модуль этого вектора равен EH (рис. 6.8).

Вектор плотности потока электромагнитной энергии называется вектором Умова–Пойнтинга :

. (6.4.2)

Вектор направлен в сторону распространения электромагнитной волны, а его модуль равен энергии, переносимой электромагнитной волной за единицу времени через единичную площадку, перпендикулярную направлению распространения волны.

В сферической электромагнитной волне, излучаемой ускоренно двигающимися зарядами, векторы направлены по параллелям, векторы - по меридианам, а поток энергии - по нормали (рис. 6.9).

Векторы Умова–Пойнтинга зависят от пространства и времени, так как от них зависят модули векторов напряженности электрического и магнитного полей. Поэтому часто пользуются параметром, называемым интенсивностью – модуль среднего значения вектора Умова–Пойнтинга:

. (6.4.3)

Интенсивность пропорциональна квадрату амплитуды:

. (6.4.4)

Зависимость интенсивности излучения от направления называют диаграммой направленности. Такая диаграмма для линейного излучателя показана на рис. 6.10.

Как доказал Герц, диполь сильнее всего излучает в направлении перпендикулярном по отношению к собственному направлению.

Ускоренно двигающиеся заряды излучают электромагнитную энергию в окружающее пространство. Вектор направлен вдоль радиуса и убывает обратно пропорционально r 2 . Излучение максимально в направлении, перпендикулярном вектору , и отсутствует вдоль этого вектора. Поэтому диаграмма направленности диполя имеет вид двух симметричных лепестков, как показано на рис. 6.10.

Давление света

Если электромагнитные волны поглощаются или отражаются телами (эти явления подтверждены опытами Герца), то из теории Максвелла следует, что электромагнитные волны должны оказывать на тела давление. Давление ЭМВ объясняется тем, что под действием электрического поля волны заряженные частицы вещества начинают упорядоченно двигаться и подвергаются со стороны магнитного поля действию силы. Однако, значение этого давления ничтожно мало.

Давление света и электромагнитный импульс настолько малы, что непосредственное их измерение затруднительно. Так, зеркало, расположенное на расстоянии 1 м от источника света в миллион свечей (кандел), испытывает давление 10 - 7 Н/м 2 . Давление излучения Солнца на поверхность Земли равно 4,3×10 - 6 Н/м 2 , а общее давление излучения Солнца на Землю равно 6×10 8 Н, что в 10 13 раз меньше силы притяжения Солнца.

Световое давление было впервые обнаружено и измерено в 1899 г. в Москве русским ученым П.Н. Лебедевым (1866-1912). Его результаты, как и более точные измерения последующих исследователей, согласуются с теорией в пределах ошибок опыта - до 2 %.

На рис. 6.11 изображен прибор, с помощью которого было измерено давление света, – радиометр . Свет, отраженный посеребренной поверхностью каждой лопасти 2, 3, передает вдвое больший импульс по сравнению со светом, поглощенным зачерненной поверхностью 1, 4. Вследствие этого лопасти начинают вращаться по часовой стрелке.

где J – интенсивность света, K – коэффициент отражения.

Опыты Лебедева имели огромное значение для утверждения выводов теории Максвелла о том, что свет представляет собой ЭМВ.

Давление света играет существенную роль в двух противоположных по масштабу областях явлений.

Так, например, гравитационное притяжение верхних слоев звезд к центру в значительной мере уравновешивается силой давления светового потока, идущего от центра звезды наружу. В атомных процессах существенной является отдача, испытываемая возбужденным атомом при излучении им света в силу малости массы атома. Световое давление может создавать ускорение атомов до , где g – ускорение свободного падения.

Впервые гипотеза о световом давлении была высказана в 1619 г. немецким ученым И. Кеплером (1571-1630) для объяснения отклонения хвостов комет, пролетающих вблизи Солнца (рис. 6.12).

Возможными областями физического применения светового давления могут служить процессы разделения смеси изотопов газов, ускорение микрочастиц и создание условий для протекания управляемой термоядерной реакции.

Электромагнитная масса и импульс

Существование давления ЭМВ приводит к выводу о том, что электромагнитному полю присущ механический импульс.

Выражая импульс как (поле в вакууме распространяется со скоростью света с ), получим

. (6.4.5)

Это соотношение между массой и энергией ЭМП является универсальным законом природы, справедливым для любых тел независимо от их внутреннего строения.

Импульс электромагнитного поля, связанного с движущейся частицей, – электромагнитный импульс – оказался пропорциональным скорости частицы υ, что имеет место и в выражении для обычного импульса m υ, где m – инертная масса заряженной частицы. Поэтому коэффициент пропорциональности в полученном выражении для импульса называют электромагнитной массой :

, (6.4.6)

где е – заряд движущейся частицы, а – ее радиус.

И даже если тело не обладает никакой иной массой, оказывается, что между импульсом и скоростью заряженной частицы существует соотношение:

. (6.4.6)

Это соотношение как бы раскрывает происхождение массы – это электродинамический эффект. Движение заряженной частицы сопровождается возникновением магнитного поля. Магнитное поле сообщает телу дополнительную инертность – при ускорении затрачивается работа на создание магнитного поля, при торможении –работа против затормаживающих сил индукционного происхождения. По отношению к движущемуся заряду электромагнитное поле является средой, неотделимой от заряда.

В общем случае можно записать, что полный импульс равен сумме механического и электромагнитного импульсов; возможно, что другие поля вносят и иные вклады в полную массу частицы, но, определенно, в полной массе есть электромагнитная часть:

, .

Если учесть релятивистские эффекты сокращения длины и преобразования электрических и магнитных полей, то для электромагнитного импульса получается также релятивистски инвариантная формула:

. (6.4.7)

Таким же образом изменяется релятивистский механический импульс.

Если в пространстве существует электромагнитное поле, то в произвольном объеме V имеется энергия

плотность электрической энергии Дж/м3,

плотность магнитной энергии, Дж/м3 .

Поскольку электромагнитное поле существует в виде волн, поле будет перемещаться в пространстве. В частности, энергия будет выходить или входить в объем V. Для оценки энергии электромагнитных волн введена физическая величина, называемая вектором Пойнтинга и равная векторному произведению векторов и :

Величина вектора Пойнтинга


где б – угол между векторами и . В идеальном диэлектрике П = EH.

Вектор Пойнтинга перпендикулярен плоскости расположения векторов и и его направление определяется «правилом винта» при вращении к по кратчайшему расстоянию (рис.1)

Размерность величины вектора - Вт/м2. Поэтому П – это энергия электромагнитного поля, проходящая в единицу времени через поверхность единичной площади, т.е. плотность потока мощности.

Энергия электромагнитного поля, выходящая из объема V в единицу времени, определяется формулой

где под интегралом – скалярное произведение векторов и , а интеграл берется по замкнутой поверхности S, ограничивающий объем V.

В случае, если диэлектрик в объеме V - неидеальный (), то возникают токи проводимости плотностью и, в соответствии с законом Джоуля – Ленца, часть энергии электромагнитного поля преобразуется во внутреннюю (тепловую) энергию диэлектрика .

Закон сохранения энергии определяется теоремой Пойнтинга:


где в левой части – скорость убывания энергии поля в объеме V, Pпот - количество теплоты, выделяющейся в 1 с в диэлектрике за счет протекания токов, т.е. мощность потерь, причем

где скалярное произведение - это плотность мощности потерь, т.е. количество теплоты, выделяемой в единицу времени.

В соответствии с теоремой Пойнтинга, изменение энергии электромагнитного поля в объему V происходит по 2-м причинам. Во - первых, за счет движения энергии в пространстве, во – вторых, за счет нагревания диэлектрика при протекании токов проводимости.



1.5 Монохроматические волны в идеальном пространстве

Радиосигнал представляет собой сложную зависимость величин E и H от времени, спектр сигнал содержит множество частот. Если сигнал узкополосный, то его спектр сосредоточен вблиз и несущей частоты и можно, в первом приближении, полагать, что колебания E(t) и H(t) имеют гармоническую форму, т.е. спектр содержит только одну частоту f, Гц (или циклическую частоту , рад/с).

Электромагнитные волны, в которых спектр колебаний содержит одну частоту, называют монохроматическими. Введение понятия монохроматических волн существенно упрощает анализ.

Предположим, что колебания распространяются вдоль одной оси z, т.е. E(t,z) и H(t,z) - функции 2-х переменных: t и z. В некоторой точке пространства z = 0 имеется источник электромагнитного поля

где Em - амплитуда колебаний.

Аналогично изменяется во времени и H(t,0). Считаем, что источник колебаний создает поле, которое не меняется по координатам x и y. В точке напряженность электрического поля

где v- скорость распространения волны, или

Постоянная

называется фазовым множителем. Если учесть, что , а длина волны


и имеет другое название – волновой множитель, или волновое число.

Мгновенная фаза колебаний

Функция времени и координаты. Если объединить в пространстве все точки, в которых колебания синфазны, т.е. , то получим поверхность равных фаз. На этой поверхности в данный момент времени значения E одинаковы. Поверхность равных фаз называется волновой поверхностью. В рассматриваемом случае волновая поверхность является плоскостью, простирающейся в пространстве бесконечно вдоль координат y и x.

а связь амплитуд напряженностей электрического и магнитного полей подчиняются формуле (1.5). Запишем, в каком соотношении находятся энергии электрического и магнитного полей в плоской волне.

Плотность энергии электрического поля

и учитывая (1.5), получим

Энергией называется общая количественная мера различных форм движения материи, а мощностью называется работа, производимая в единицу времени .

Рассмотрим первое уравнение Максвелла с учетом сторонних токов из системы (2.23). Все члены этого уравнения - вектор-ные величины, имеющие размерность ампер на квадратный метр (А/м 2). Чтобы сравнить его с уравнением (4.1) нужно преобразовать все слагаемые в скалярные величины, измеряющиеся в ваттах. Для этого до-статочно скалярно умножить их на вектор Е и проинтегрировать полученное выражение по объему V.

После скалярного умножения получим:

Подставим это выражение в формулу (4.2) и перенесем произведение вектора напряженности электрического поля на вектор плотности сторонних токов в левую часть, а все остальные слагаемые - в правую. Кроме того, с помощью второго уравнения Максвелла заменим rot Е на производную по времени от вектора магнитной индукции с обратным знаком и с помощью формул (1.9), (1.14) выразим векторы индукции через соответствующие векторы напряженности поля и проницаемости.

Получим :

В преобразовании уравнения (4.6) использована теорема Остроградского-Гаусса (1.33). Кроме того, в последнем слагаемом правой части уравнения изменен порядок операций интегри-рования и дифференцирования .

Левая часть уравнения (4.6) определяет мощность, отдаваемую сторонними токами в объеме V . Сторонний ток проводимости - это упорядоченное движение заряженных частиц. Для простоты положим, что векторы напряженности электрического поля и плотности сторонних токов коллинеарны. Если частицы тормозятся полем, ток отдает ему свою энергию. Для этого требуется, чтобы векторы напряженности электрического поля и плотности стороннего тока были направлены про-тивоположно. Значит, скалярное произведе-ние векторов Е и J ст будет отрицательным и левая часть уравнения (4.5) станет положительной величиной. Такая ситуация характерна для работы некоторых передающих антенн.

Если векторы плотности стороннего тока и напряженности электрического поля направлены в одну сторону, заряженные частицы будут ускоряться полем, и ток станет отбирать у него энергию. Эту процедуру осуществляют разного рода приемные антенны, однако энергия, которую они могут отнять у поля в свободном пространстве, невелика.

Иначе обстоит дело в волноводах, которые служат для передачи энергии от источника к потребителю. На входном конце волновода сторонние силы реализуют процедуру возбуждения поля. Когда энергия достигает конца волновода, ее надо полностью отобрать у поля и передать потребителю. Для этого используются приемные устройства, преобразующие энергию электрической или магнитной составляющей поля в ток проводимости и передающие его дальше. В этом случае требуется отбирать у поля максимум энергии.

Реальная среда всегда обладает электропроводностью. Поэтому, зная напряженность электрического поля и электропроводность среды, можно найти мощность тепловых потерь, т. е. энергию, теряемую электромагнитным процессом за единицу времени.

Электрическая мощность - это произведение тока на напряжение. Нам известна напряженность электрического поля и электропроводность среды. Значит, можно определить плотность тока проводимости, создаваемого полем. Напряженность электрического поля имеет размерность В/м, а плотность тока проводимости - А/м 2 . Их произведение будет иметь размерность Вт/м 3 , то есть плотности мощности . Значит, первое слагаемое в правой части формулы (4.6), интеграл от плотности мощности, описывает мощность потерь .

Обратимся к рис. 4.1, на котором изображена картина линий вектора плотности тока проводимости. В объеме протекания тока выделена цилиндрическая область V . Этот цилиндр имеет длину l и площадь основания S , а ось его совпадает с направлением вектора плотности тока проводимости. Для упрощения решения задачи область должна быть так мала, чтобы вектор плотности тока внутри нее можно было бы считать не зависящим от координат. В этом случае в соответствии с первым слагаемым правой части формулы (4.6) получим:

(4.7)

Так как плотность тока проводимости и напряженность поля не зависят от координат, они вынесены из-под знака интеграла. Там остался только скалярный дифференциал объема. Его интегрирование по объему дает величину объема. В средней части формулы (4.7) объем цилиндра представлен как произведение площади его основания S на длину l, а параллельные векторы плотности тока и напряженности поля заменены их модулями. Ток I в последней части формулы определен как произведение площади основания цилиндра на плотность тока, а напряжение U - как произведение длины цилиндра на напряженность электрического поля.

Равенство (4.7) эквивалентно закону Джоуля - Ленца .

Для выяснения физического смысла последнего слагаемого в правой части уравнения (4.6) рассмотрим частный случай. Предположим, что объем V окружен идеальной проводящей оболочкой, совпадающей с поверхностью S . Такая оболочка блокирует обмен энергией с внешней средой, и объем становится энергетически изолированным . В этом случае тангенциальная (касательная) составляющая напря-женности электрического поля на поверхности S будет равна нулю. Векторный дифференциал поверхности dS совпадает по направлению с ортом внешней нормали n 0 . Следовательно, поверхностный интеграл в уравнении (4.6) будет равен нулю из-за того, что нормальная компонента вектор-ного произведения [Е, Н] определяется тангенциальными составляю-щими входящих в него векторов.

Предположим, кроме того, что электропроводность среды в объеме V равна нулю. Значит, тепловые потери исчезнут, и первый интеграл в правой части уравнения (4.6) также будет ра-вен нулю.

Получим :

Осталось выяснить физическую сущность поверхностного инте-грала в уравнении (4.6). Предположим, что потери внутри объема V отсут-ствуют и, кроме того, величина электромагнитной энергии остаетсяпостоянной.

B этом случае уравнение (4.6) примет следующий вид:

(4.10)

Потерь в объеме нет, и запас энергии не меняется, значит, вся мощность сторонних источников должна излучаться в окружающее пространство. Следовательно, поток вектора Пойнтинга П через поверхность S равен излучаемой мощности, которую в уравнении (4.1) мы обозначили Р Σ .

Таким образом, качественное уравнение (4.1) преобразовано в уравнение (4.6) с помощью которого можно проводить количественные оценки составляющих баланса мощности.

Рассмотрим частный случай отбора энергии электромагнитного поля сторонними источниками. Пусть энергия поступает в объем V из окружающего пространства. Часть ее преобразуется в тепло, а другая отбирается сто-ронними источниками. При этом количество электромагнитной энер-гии, запасенной в объеме V , не изменяется.

Урав-нение (4.6) в этом случае надо переписать в следующем виде :

(4.11)

Левая часть уравнения (4.11) определяет мощность, поступающую в объем V извне, а правая часть - мощность, расходуемую в этом объеме. Это уравнение было получено Пойнтингом и носит название теоремы Пойнтинга в интегральной форме .

Так как левая часть уравнения (4.11) представляет собой поток энергии, то вектор Пойнтинга является вектором плотности потока энергии . Направление вектора Пойнтинга в изотропной среде совпадает с направлением распространения энергии .

Плотность энергии электромаг-нитного поля

Мы выяснили, что энергия, запасенная электромаг-нитным полем в объеме V определяется формулой (4.9). Ин-теграл в этом выражении можно представить в виде суммы двух слагаемых, одно из которых зависит только от электрического по-ля, а второе - только от магнитного:

W м - энергия магнитного поля, Вт*с:

Сумма результатов вычислений по формулам (4.15) и (4.16) дает объемную плотность полной энергии электромагнитного поля.

Необходимо обратить внимание на следующий факт. Векторы напряженности электрического и магнитного полей удовлетворяют принципу суперпозиции. Это означает, что векторы напряженности полей, созданных разными источниками, складываются. Однако этот принцип не распространяется на энергию.

Для доказательства этого рассмотрим два поля, вектора напряженности которых равны Е 1 , Н 1 и Е 2 , Н 2 соответственно. Они существуют в одной области V и имеют энергии W 1 и W 2 . Векторы напряженности суммарного поля определятся простым суммированием: Е = Е 1 + Е 2 , Н = Н 1 + H 2 . Энергию суммарного поля надо определять по формуле (4.9):

Взаимная энергия может быть как положительной, так и отрицательной. Если же векторы Е 1 и Е 2 , а также Н 1 и Н 2 взаимно перпенди-кулярны, то взаимная энергия полей равна нулю.

В переменном электромагнит-ном поле энергия непрерывно перераспределяется между электрическим и магнитным полем. Это перераспределение в каждой точке поля описывается уравнением (4.4). Однако его целесообразно переписать в ином виде:

Уравнение (4.19) является дифференциальной формой теоремы Пойнтинга .

Скорость распространения элек-тромагнитной энергии

Электромагнитная энергия распространяется в пространстве не мгновенно, а с некоторой скоростью. Для определения этой скорости в пространстве, в котором распространяется энергия, выделим энергетическую трубку (рис. 4.2). Форма трубки должна быть такой, что-бы ее боковая поверхность совпадала с направлением вектора Пойнтинга. То есть на боковой поверхности трубки нормальная составляющая векто-ра Пойнтинга должна быть равна нулю.

Энергию ΔW , распространяющуюся вдоль трубки, можно определить интегрированием плотности энергии по площади сечения трубки и умножением результата на ее длину:

Положение этого сечения не важно, так как через любое сечение трубки за время Δt проходит вся энергия ΔW . При достаточно малых промежутках времени Δt вектор Пойнтинга можно считать неизменным, поэтому, кроме равенства (4.21) должно выполняться еще одно:

Если векторы Е и Н постоянны в сечении ΔS , постоянными будут и вектор Пойнтинга П и объемная плотность энергии w .В этом случае соотношение (4.23) можно упростить, основываясь на том, что направ-ление вектора Пойнтинга совпадает с направлением распростра-нения энергии :

(4.24)

Следовательно, скорость переноса энергии электромагнитным полем можно вычислить, разделив плотность потока энергии (вектор Пойнтинга) на плотность энергии .

Как и любая форма материи, электромагнитное поле обладает энергией, которая может распространяться в пространстве и преобразоваться в другие виды энергии.

Сформулируем уравнение баланса электромагнитного поля применительно к некоторому объему V, ограниченному поверхностью S. Пусть, в этом объеме, за счет сторонних источников, выделяется электромагнитная энергия. Из общефизических соображений, очевидно, что мощность сторонних источников будет расходоваться на потери, на изменение энергии и частично будет рассеиваться на поверхности S, уходя во внешнее пространство.

Будем полагать, что среда в объеме V однородная и изотропная. Мощность в объеме V выделяется за счет протекания сторонних токов, в дальнейшем будем пользоваться известными материальными уравнениями:

; ; (2)

Материальные уравнения в форме (2) не позволяют учесть потери связанные с явлением поляризации и намагничивания вещества. Уравнение баланса в форме (1) дает качественное представление о балансе энергии. Для получения уравнения необходимо перейти к векторам электромагнитного поля, т.е. воспользоваться уравнениями Максвелла. Для получения количественного соотношения обратимся к уравнениям Максвелла.

Запишем первое уравнение Максвелла с учетом сторонних токов:

Размерность входящих в (3) составляющих . Они являются векторными величинами.

Для получения уравнения, аналогичного (1) , надо уравнение (3) преобразовать в скалярное и обеспечить размерность слагаемых в Ваттах. Указанный алгоритм можно реализовать, если каждое из слагаемых умножить скалярно на и проинтегрировать по объему.

Умножим все составляющие на Е, получим:

Преобразовав левую часть (4) используем известное векторное тождество:. Из полученного тождества вытекает следующее выражение:(5)

Выразим, используя второе уравнение Максвелла:

Подставляя правую часть (6) в левую часть (4) получим:

Преобразуем предыдущее выражение следующим образом:

Также (7) можно записать следующим образом:

В последнем соотношении (9) мы сделаем следующее:

1) поменяем порядок дифференцирования по времени, и интегрирования по объему.

2) При интегрировании по объему воспользуемся теоремой Остроградского - Гаусса.

Для цилиндрического проводника с током I: .

Для элементарного цилиндрического проводника, концы которого перпендикулярны линиям тока:

Для произвольного объема:

В выражении (11) первый интеграл это мощность потерь.

В левой части (9) стоит мощность, выделяемая сторонними токами в объеме V. Ток проводимости, который представляет собой упорядоченное движение заряженных частиц, отдает энергию электромагнитного поля, если частицы попадают в тормозящее электромагнитное поле.

Для того, чтобы электромагнитное поле было тормозящим необходимо чтобы скалярное произведение удовлетворяло следующему условию: .

При этом левая часть (9) становится положительной величиной.

Рассмотрим второе слагаемое правой части. Будем полагать, что поверхность S окружающая V является идеально проводящей

и проводимость среды в объеме равна нулю.

По условию поверхность S является идеально проводящей.

При этом уравнение баланса имеет следующий вид:

т.е. в рассматриваемом случае мощность сторонних источников может расходоваться на изменение энергии внутри объема. В правой части выражения (12) мы получили скорость изменения энергии .

В этом случае мощность сторонних токов рассеиваясь на поверхности S уходит во внешнее пространство. Таким образом, мы получили, что уравнение (9) полностью идентично формуле (1) .

Соотношение (9) было сформулировано Поинтингом (уравнение баланса энергии электромагнитного поля – теорема Пойнтинга).

Проанализируем несколько частных случаев,

которые следуют из теоремы Пойнтинга.

1. Энергия может поступать в объем V не только за счет сторонних источников. Поток энергии, определяемой интегралом , может быть направлен из внешнего пространства внутрь объема V.

2. Сторонние источники могут не только отдавать энергию, а также вбирать энергию электромагнитного поля. Поток заряженных частиц вбирает энергию электромагнитного поля, если этот поток попадает в ускоряющее электрическое поле. При этом скалярное произведение , а левая часть в соотношении (9) становится отрицательной величиной.

3 . Пусть, поток энергии, определяемой последним слагаемым в соотношении (9) , направлен внутрь объема, причем, мощность, которая поступает, таким образом, расходуется на джоулевы потери и вбирается сторонним источником так, что энергия внутри объема V остается неизменной. В этом случае соотношение (9) преобразуется к виду (15)

Так как слева стоит полная поступающая через поверхность энергия, то вектор можно трактовать как плотность потока энергии (вектор Пойнтинга).

Вектор Пойнтинга равняется пределу отношения энергии, проходящей за время DТ, через поверхность DS, перпендикулярно направлению распространения энергии, при DS и DТ стремящихся к нулю. В изотропных средах направление совпадает с направлением распространения энергии.

4.2. Плотность энергии электромагнитного поля.

Из предыдущего параграфа известно, что запас электромагнитного поля в объеме V:(1)

Правую часть можно представить в виде двух слагаемых, одно из которых зависит только от электрического поля, а другое только от магнитного.

Так как энергии представлены в виде интегралов по объему, то подынтегральные выражения можно трактовать как объемную плотность энергий, а их сумму - как объемную плотность энергии электромагнитного поля.

Принцип суперпозиции , которому удовлетворяют векторы электромагнитного поля, не распространяется на энергию электромагнитного поля.

Пусть в объеме V существует независимо два электромагнитных поля. Энергия суммарного электромагнитного поля:

где W 12 - взаимная энергия электромагнитного поля. Она может быть как положительной, так и отрицательной, т.е. суммирование электромагнитных полей может приводить как к увеличению энергии результирующего поля, так и к уменьшению ее. Если электрический и магнитный вектора, суммируемых полей, взаимно ортогональны, то очевидно, что взаимная энергия будет равна нулю. В случае переменных процессов электромагнитная энергия непрерывно изменяется. Эти изменения в каждой точке можно описать следующим соотношением:

Так как левая часть и первое слагаемое есть подынтегральные выражения, то их можно трактовать объемной плотностью мощности сторонних источников и сторонних потерь.

Соотношение (8) есть дифференциальная форма теоремы Пойнтинга.

4.3. Скорость распространения энергии электромагнитных волн.

В пространстве, в котором распространяется электромагнитная энергия, выделим энергетическую трубку (некий протяжный объем, на боковой поверхности которого вектор Пойнтинга равен нулю).

Пусть, за время Dt через боковую поверхность DS прошла энергия DW и оказалась сосредоточенной между сечениями DS и DS 1 , между которыми, расстояние Dl. Направление единичного вектора совпадает с направлением распространения энергии.

Тогда скорость распространения энергии:

Энергию, заключенную между торцами DS и DS 1:

где w - объемная плотность энергии, а DS ’ - среднее сечение.

Если промежуток Dt взять достаточно малым, чтобы не успел измениться, то энергию:

Приравняем (2) к (3) и выразим . Получим:

Найдем предел от соотношения (4) при Dt®0. Получим:

Получили общее выражение для величины скорости распространения энергии. Если предположить, что векторы и , а стало быть, и неизменны в пределах поперечного сечения цилиндра, то в этом случае, векторы и совпадают по направлению распространения энергии.

4.4. Уравнения Максвелла для монохроматического поля.

4. Метод комплексных амплитуд.

Любые переменные электромагнитные процессы можно представить в виде дискретного или непрерывного спектра гармонических электромагнитных полей. Поэтому в дальнейшем будем анализировать гармонические электромагнитные процессы (монохроматические), так как сигнал любой сложности можно представить как суперпозицию гармонических процессов. Обычно используют метод комплексных амплитуд.

Пусть имеется некоторый гармонический процесс:

ему в соответствие ставится: (2)

Аналогично и для векторных величин. Пусть, есть вектор изменяющийся по гармоническому закону:

Ему соответствует комплексная величина:

Если, мгновенные скалярные и векторные функции удовлетворяют некоторым линейным уравнениям, то этим же уравнениям удовлетворяют и их комплексные аналоги.

Использование метода комплексных амплитуд существенно упрощает решение задач с геометрическими электромагнитными процессами. Причина этого: дифференцирование по времени от комплексных амплитуд эквивалентно просто домножению на jw, а интегрирование по времени эквивалентно делению на jw.

5. 4.5. Система уравнений монохроматического (гармонического) поля.

Известно, что уравнения Максвелла относятся к линейным дифференциальным уравнениям. Поэтому в случае гармонических электромагнитных полей в уравнениях Максвелла можно перейти к комплексным амплитудам.

Т.е. если , то , где

Используя понятие комплексных амплитуд, получим:

(1) т.к. , (2)

(4) , где(5)

Комплексная диэлектрическая проницаемость среды.

Входящее в соотношение (5) отношение называется тангенсом угла электрических потерь: (6)

Комплексная диэлектрическая проницаемость в форме (5) справедлива для сред, в которых имеются только джоулевы потери. В общем случае, когда необходимо учесть диэлектрические потери представляется в следующем виде: (7)

(8) – тангенс угла диэлектрических потерь

Этот общий случай позволяет также учесть потери, связанные с эффектом поляризации в переменном электрическом поле. Наличие диэлектрических потерь приводит к появлению фазового сдвига между электрическими векторами D и Е. Величина которого: (9)

Переходя во втором уравнении Максвелла к комплексным амплитудам получим: (10) .

Где (11)

(12) - тангенс угла магнитных потерь.

Магнитные потери связаны с эффектом периодического изменения намагниченности вещества во внешнем поле. Наличие магнитных потерь приводит к фазовому запаздыванию вектора В относительно вектора Н (явление Гистерезиса) в электромагнитных средах.

В случае гармонического поля при использовании метода комплексных амплитуд, возникает дополнительная возможность учесть потери, связанные с эффектами поляризации и намагничивания вещества.

В случае гармонических полей при использовании метода комплексных амплитуд 3 и 4 уравнения Максвелла являются следствием первых двух.

Поясним это:

В средах с проводимостью неравной нулю объемная плотность убывает и в случае установившегося электромагнитного процесса (к ним относятся гармонические колебания). Можно считать, что объемная плотность электрического заряда равна нулю. В этом случае третье уравнение Максвелла запишется следующим образом:

Это соотношение для среды с конечной проводимостью. Оно является справедливым и для не проводящих сред. Если в непроводящей среде рассмотрим гармонический процесс, то:

Всякое изменение свободных электрических зарядов сопровождается появлением в среде электрического тока, но при в среде невозможно появление тока удовлетворяющего закону Ома. Поэтому (13) является справедливым в случае гармонических процессов и для непроводящих сред.

Переходя в уравнении (13) к комплексным амплитудам, получим:

Покажем, что оно является следствием (4) . Возьмем дивергенцию от правой и левой части. Аналогично и для 4 уравнения Максвелла:

В случае гармонических полей они полностью описываются соотношениями(4) , (11) . Будем предполагать, что в рассмотренной области имеются сторонние источники. В этом случае выражения (4) , (11) не применимы. Для получения справедливых соотношений воспользуемся 1 уравнением Максвелла:

Рассмотрим 3 уравнение Максвелла. Возьмем дивергенцию от соотношения (16) .

Для сторонних токов:

Окончательно получим: (18)

В случае гармонических электромагнитных полей мы должны воспользоваться соотношением (17) и (18) , при этом (4) и (11) останутся без изменений.

Итак, когда имеются сторонние источники:

Уравнения Максвелла без учета сторонних источников:

Подставляя вторую систему в первую, с использованием метода комплексных амплитуд, получим:

В дальнейшем индекс m будем формально опускать.

5.6. Уравнения баланса для средней за период мощности.

Теорема Умова-Пойнтинга и соответствующее ей аналитическое соотношение

были сформулированы для мгновенных значений и остаются справедливыми в последний момент времени. Это соотношение - важнейшее в классе электродинамики.

При анализе гармонических электромагнитных процессов особый интерес представляют энергетические параметры, усредненные по периоду. Среднее за период значение: (2)

Получим уравнение баланса для средней за период значения мощности гармонического электромагнитного процесса. Необходимо для каждого из слагаемых уравнения (1) получить величину, определяемую соотношением (2) . Т. к. в соотношении (2) осуществляется интегрирование по времени, а анализируется гармонический электромагнитных процесс, то, естественно, надо воспользоваться методом комплексных амплитуд. Непосредственная замена мгновенных функций, соответствующими комплексными аналогами возможна только в линейных уравнениях. В данном случае непосредственная замена мгновенных векторов электромагнитного поля невозможна, так как выполняются следующие неравенства:

В случае нелинейных уравнений, переход к комплексным амплитудам осуществляют с помощью следующего соотношения:

Получим уравнение баланса для средней за период значения мощности гармонического электромагнитного поля. Сначала определим среднее за период значения функций входящие в (1).

Для начала получим среднее за период значение вектора Пойнтинга:

раскроем векторное произведение: (4)

Таким образом, сумму можно записать как удвоенную действительную часть любого из слагаемых:

Величина от времени не зависит. С учетом приведенных рассуждений, получаем:

Подставим (6) в (2) . Два последних слагаемых, в соотношении (6) , меняются с удвоенной частотой, т.е. половину периода принимают положительную величину, а другую половину - отрицательную. Поэтому и среднее за период значение равно нулю.

Величина, от которой берется действительная часть (8) называется комплексным вектором Пойнтинга.

(8) - комплексный вектор Пойнтинга.

Итак, (7) определяет среднее за период значение плотности потока энергии через поверхность S. Среднее за период значение потока мощности:

Рассмотрим каждое из слагаемых выражения (1) .

Таким образом, в результате проделанных нами вычислений, получили:

В среднем за период, мощность сторонних источников расходуется на потери внутри объема и частично уходит во внешнее пространство, через поверхность S.

6. 4.7. Уравнения баланса для комплексной мощности.

В радиотехнике часто пользуются понятием комплексной мощности. Так, если рассматривается гармонический процесс, то комплексную мощность сторонних источников можно записать:

Получим уравнение баланса для комплексных мощностей гармонического электромагнитного процесса. Уравнение баланса для комплексной мощности получается аналогично уравнению баланса для среднего за период значения. Удобно записать уравнение Максвелла сразу для комплексно-сопряженных величин:

Вновь полагаем, что потери в среде обусловлены конечной проводимостью:

Возьмем комплексное сопряжение от всех комплексных величин:

Умножим скалярно правую и левую части соотношения (1) на . Получим:

Воспользуемся векторным тождеством, из которого следует:

Выразим из тождества :

Будем предполагать, что магнитные потери в среде отсутствуют, тогда . Подставим в соотношение (3) : (4)

7. Проинтегрируем по объему:

Поделим на 2 и учтем, что во втором слагаемом стоит разность энергий

Выражение (7) запишем в виде системы из 2-х уравнений: одно устанавливает связь между активными мощностями, другое - между реактивными.

Получим: (8)

Как мы и ожидали, соотношение (8) совпадает с уравнением для средних за период мощностей. Из (9) следует, что реактивная мощность сторонних источников равна умноженной на 2w разности средних за период значений энергий + реактивный поток энергии, через поверхность S. Рассмотрим важное приложение к (8) и (9) . Будем предполагать, что объем V, для которого составлено уравнение баланса, является изолированной системой. В этом случае комплексный поток мощности, через поверхность S, равен нулю и уравнение баланса:

В этом случае происходит колебательный обмен энергией между электрическим и магнитным полями, т.е. один момент существует только электрическое поле, потом и то и другое, потом только магнитное и т.д. В том случае когда

мощность сторонних источников становится чисто активной:

и обмен энергиями происходит без участия сторонних источников. Если (11) не соблюдается, то для этого обмена необходимо участие сторонних источников. Изолированная система, в которой мощность сторонних источников чисто активна, т.е. выполняется равенство (11) , называется резонирующей изолированной системой, а условие (11) называется условием резонанса . Для характеристики изолированной колебательной системы вводят понятие добротности.

Под добротностью Q понимают:

Средняя за период энергия электрического поля:

При резонансе , тогда

Соотношения (6) , (7) были получены при условии, что . Потери в среде обусловлены конечной проводимостью

В этом случае общее выражение для баланса комплексных мощностей остается неизменным, но конкретное, аналитическое выражение для слагаемых, изменится. Мощность потерь записывается следующим образом:

В заключение этого параграфа приведем выражение для скорости распределения энергии, записанное через комплексные амплитуды:

Где DS - поперечное сечение.

В том случае, когда составляющие неизменны, получаем:

8. 4.8. Теорема единственности для внутренней и внешней задач электродинамики.

Уравнения Максвелла являются дифференциальными уравнениями в частных производных, поэтому они допускают множество решений. Из общефизических соображений, очевидно, что если полностью повторять условия опытов, то будем получать одно и то же распространение электромагнитного поля. Для обеспечения единственности решения электродинамических задач электромагнитное поле должно удовлетворять не только уравнениям Максвелла, но также должно удовлетворять ряду дополнительных условий. Они называются условиями единственности решения уравнений Максвелла. Выводы и доказательства формулируются теоремой единственности. Теорема единственности отдельно формулируется двух основных видов задач:

для внутренней и внешней задач электродинамики.

Требуется определить распределение электромагнитного поля внутри поверхности S (внутренняя задача). Определим распространение электромагнитного поля в пространстве, внешнем по отношению к объему V, ограниченному поверхностью S. ().

9. 4.9. Единственность решения внутренних задач.

Внутренние задачи электродинамики имеют единственное решение, если выполняется одно из следующих условий:

1 .Если в каждой точке М поверхности S задана проекция вектора на плоскость, касательную к поверхности S в точке М: - "Е" задача.

2 . Если в каждой точке M поверхности S задана проекция вектора на плоскость, касательную к поверхности S в точке М: - "Н" задача.

3 . Если на части поверхности S в каждой точке задана проекция вектора на плоскость, касательную к S в этой точке, а на другой части плоскости задана проекция вектора касательная к S в точке М:

- "ЕН" задача.

4 . Если в каждой точке поверхности S задано соотношение между проекциями векторов и на плоскость, касательную к S в точке М.

10. 4.10. Условия единственности внешних задач электродинамики.

Для обеспечения единственности решения внешних задач электродинамики необходимо выполнение одного из условий 1-4, плюс к этому должно выполнятся одно из условий, описывающее поведение электромагнитного поля при бесконечно удаленных точках (при r®¥).

1 . Принцип предельного поглощения () требует, чтобы эта зависимость была , т.е. каждая из составляющих поля должна убывать с увеличением расстояния быстрее, чем . В реальных средах имеются пусть очень малые, но конечные по величине потери, т.е. . Поэтому, в бесконечно удаленных точках, электромагнитное поле равно нулю.

2 . Если в среде отсутствуют потери и принцип предельного поглощения не применим, в этом случае векторы электромагнитного поля должны удовлетворять следующим соотношениям:

Условия Зоммерфельда.

Физически эти условия означают, что электромагнитные волны при r®¥ имеют вид сферических волн, расходящихся от источника электромагнитного поля.

Энергией называется общая количественная мера различных форм движения материи , амощностью называется работа, производимая в единицу времени .

Электромагнитное поле обладает энергией, значит, ее можно определить. При этом векторы поля и электродинамические характеристики средысчитаем известными.

4.1. Баланс энергии электромагнит­ного поля

Вначале сформулируем уравнение баланса энергии в общем виде. Для этого рассмотрим объем V , заполненный однородной изо­тропной средой и ограни­ченный поверхностью S . Пусть в этом объеме за счет действия сторонних источни­ков выделяется электромаг­нитная энергия. Очевидно, что мощность, выделяемая сторонними источниками, может расходо­ваться на потери в среде, на изменение запаса энергии внутри объема и на излучение в окружающую среду через поверхность S . При этом должно выполняться следующее равенство:

Уравнение (4.1) дает качественное представление об энергетических соотношениях в электромагнитном поле. Для определения количественных характеристик воспользуемся уравнениями Максвелла.

Рассмотрим первое уравнение Максвелла с учетом сторонних токов из системы (2.23). Все члены этого уравнения - вектор­ные величины, имеющие размерность ампер на квадратный метр (А/м 2). Чтобы сравнить его с уравнением (4.1) нужно преобразовать все слагаемые в скалярные величины, измеряющиеся в ваттах. Для этого до­статочно скалярно умножить их на вектор Е ипроинтегрировать полученное выражение по объему V . После скалярного умножения получим:

Подставим это выражение в формулу (4.2) и перенесем произведение вектора напряженности электрического поля на вектор плотности сторонних токов в левую часть, а все остальные слагаемые – в правую. Кроме того, с помощью второго уравнения Максвелла заменим rot Е на производную по времени от вектора магнитной индукции с обратным знаком и с помощью формул (1.9), (1.14) выразим векторы индукции через соответствующие векторы напряженности поля и проницаемости. Получим:

В преобразовании уравнения (4.6) использована теорема Остроградского-Гаусса (1.33) . Кроме того, в последнем слагаемом правой части уравнения изменен порядок операций интегри­рования и дифференцирования.

Левая часть уравнения (4.6) определяет мощность, отдаваемую сторонними токами в объеме V . Сторонний ток проводимости – это упорядоченное движение заряженных частиц. Для простоты положим, что векторы напряженности электрического поля и плотности сторонних токов коллинеарны. Если частицы тормозятся полем, ток отдает ему свою энергию. Для этого требуется, чтобы векторы напряженности электрического поля и плотности стороннего тока были направлены про­тивоположно. Значит, скалярное произведе­ние векторов Е и J ст будет отрицательным и левая часть уравнения (4.5) станет положительной величиной. Такая ситуация характерна для работы некоторых передающих антенн.

Если векторы плотности стороннего тока и напряженности электрического поля направлены в одну сторону, заряженные частицы будут ускоряться полем, и ток станет отбирать у него энергию. Эту процедуру осуществляют разного рода приемные антенны, однако энергия, которую они могут отнять у поля в свободном пространстве, невелика.

Иначе обстоит дело в волноводах, которые служат для передачи энергии от источника к потребителю. На входном конце волновода сторонние силы реализуют процедуру возбуждения поля. Когда энергия достигает конца волновода, ее надо полностью отобрать у поля и передать потребителю. Для этого используются приемные устройства, преобразующие энергию электрической или магнитной составляющей поля в ток проводимости и передающие его дальше. В этом случае требуется отбирать у поля максимум энергии.

Реальная среда всегда обладает электропроводностью. Поэтому, зная напряженность электрического поля и электропроводность среды, можно найти мощность тепловых потерь, т. е. энергию, теряемую электромагнитным процессом за единицу времени.

Электрическая мощность – это произведение тока на напряжение. Нам известна напряженность электрического поля и электропроводность среды. Значит, можно определить плотность тока проводимости, создаваемого полем. Напряженность электрического поля имеет размерность В/м, а плотность тока проводимости – А/м 2 . Их произведение будет иметь размерность Вт/м 3 , то есть плотности мощности . Значит, первое слагаемое в правой части формулы (4.6), интеграл от плотности мощности, описывает мощность потерь .

Обратимся к рис. 4.1, на котором изображена картина линий вектора плотности тока проводимости. В объеме протекания тока выделена цилиндрическая область V . Этот цилиндр имеет длину l и площадь основания S , а ось его совпадает с направлением вектора плотности тока проводимости. Для упрощения решения задачи область должна быть так мала, чтобы вектор плотности тока внутри нее можно было бы считать не зависящим от координат. В этом случае в соответствии с первым слагаемым правой части формулы (4.6) получим:

Так как плотность тока проводимости и напряженность поля не зависят от координат, они вынесены из-под знака интеграла. Там остался только скалярный дифференциал объема. Его интегрирование по объему дает величину объема. В средней части формулы (4.7) объем цилиндра представлен как произведение площади его основания S на длину l , а параллельные векторы плотности тока и напряженности поля заменены их модулями. Ток I в последней части формулы определен как произведение площади основания цилиндра на плотность тока, а напряжение U – как произведение длины цилиндра на напряженность электрического поля.

Равенство (4.7) эквивалентно закону Джоуля - Ленца .

Для выяснения физического смысла последнего слагаемого в правой части уравнения (4.6) рассмотрим частный случай. Предположим, что объем V окружен идеальной проводящей оболочкой, совпадающей с поверхностью S . Такая оболочка блокирует обмен энергией с внешней средой, и объем становится энергетически изолированным . В этом случае тангенциальная (касательная) составляющая напря­женности электрического поля на поверхности S будет равна нулю. Векторный дифференциал поверхности dS совпадает по направлению с ортом внешней нормали n 0 . Следовательно, поверхностный интеграл в уравнении (4.6) будет равен нулю из-за того, что нормальная компонента вектор­ного произведения [Е, Н] определяется тангенциальными составляю­щими входящих в него векторов.

Предположим, кроме того, что электропроводность среды в объеме V равна нулю. Значит, тепловые потери исчезнут, и первый интеграл в правой части уравнения (4.6) также будет ра­вен нулю. Получим:

Осталось выяснить физическую сущность поверхностного инте­грала в уравнении (4.6). Предположим, что потери внутри объема V отсут­ствуют и, кроме того, величина электромагнитной энергии остаетсяпостоянной. B этом случае уравнение (4.6) примет следующий вид:

Потерь в объеме нет, и запас энергии не меняется, значит, вся мощность сторонних источников должна излучаться в окружающее пространство. Следовательно, поток вектора Пойнтинга П через поверхность S равен излучаемой мощности, которую в уравнении (4.1) мы обозначили Р Σ .

Таким образом, качественное уравнение (4.1) преобразовано в уравнение (4.6) с помощью которого можно проводить количественные оценки составляющих баланса мощности.

Рассмотрим частный случай отбора энергии электромагнитного поля сторонними источниками. Пусть энергия поступает в объем V из окружающего пространства. Часть ее преобразуется в тепло, а другая отбирается сто­ронними источниками. При этом количество электромагнитной энер­гии, запасенной в объеме V , не изменяется. Урав­нение (4.6) в этом случае надо переписать в следующем виде:

Левая часть уравнения (4.11) определяет мощность, поступающую в объем V извне, а правая часть - мощность, расходуемую в этом объеме. Это уравнение было получено Пойнтингом и носит название теоремы Пойнтинга в интегральной форме .

Так как левая часть уравнения (4.11) представляет собой поток энергии, то вектор Пойнтинга является вектором плотности потока энергии . Направление вектора Пойнтинга в изотропной среде совпадает с направлением распространения энергии .



Рассказать друзьям