Использование алгоритмов в работе с дошкольниками. Методика ознакомления детей-дошкольников с окружающим миром

💖 Нравится? Поделись с друзьями ссылкой

Количество часов - 12 часов

Цель самостоятельной работы: изучение содержания и организации работы воспитателя по ознакомлению детей дошкольного возраста с алгоритмами.

Обеспечивающие средства

План изучения темы.

1. Оформить конспект по теме «Алгоритм» по следующему плану:

Анализ программных задач по формированию алгоритмических умений;

Значение развития у дошкольников алгоритмических умений;

Методика работы по ознакомлению с алгоритмами в возрастных группах;

2. Разработать конспект занятия по формированию алгоритмических умений у детей дошкольного возраста (возрастная группа на выбор студента)

1. Оформить конспект по предложенному плану.

2. Изучить методическую литературу и составить перечень дидактических игр и упражнений по формированию алгоритмических умений по следующей форме:

3. Разработать фрагмент конспекта занятия по формированию алгоритмических умений у детей дошкольного возраста (возрастная группа по выбору студента).

4. Письменно подобрать примеры ситуаций по формированию представлений об алгоритмах:

а) в режимные моменты,

б) в процессе чтения произведений художественной литературы.

5. Составить текст консультации для родителей по формированию у дошкольников алгоритмических умений.

Требования к содержанию отчета – отчет о выполнении задания оформляется письменно.

Контрольные вопросы

1. Сравните задачи и содержание представлений об алгоритмах в разных возрастных группах.

2. В чем заключается сущность системы работы по формированию у дошкольников алгоритмических умений?

3. Приведите примеры интеграции содержания данной темы с другими образовательными областями.

1. Воронина Л.В., Утюмова Е.А. Современные технологии математического образования дошкольников: учеб. пособие / под общ. ред. Л.В. Ворониной. – Екатеринбург: УрГПУ, 2013. – 282 с.

Тема 12. Преемственность в работе дошкольного учреждения с семьей и школой по реализации задач математического развития

Количество часов – 10 часов

Цель самостоятельной работы:

- изучение преемственности в содержании, методах и формах обучения математике в подготовительной группе и в 1 классе начальной школы;

- изучение значения работы с родителями для математического развития дошкольников, форм работы с семьей.

Обеспечивающие средства

Учебно-методическая литература;

План изучения темы.

Задание для самостоятельной работы

    Ознакомление с содержанием раздела «Развитие математических представлений» в подготовительной группе и образовательной программе 1 класса.

    Оформление таблицы.

    Анализ плана работы детского сада по осуществлению преемственных связей со школой.

    Изучение форм совместной работы дошкольного учреждения и семьи по математическому развитию детей.

Порядок выполнения самостоятельной работы

    Оформить конспект согласно предложенному плану:

Требования современной начальной школы к математическому развитию детей;

Преемственность в содержании и методах обучения математике;

Формы организации преемственности в работе начальной школы и детского сада по обучению математике;

Показатели готовности детей к изучению математики в первом классе.

2. Провести сравнительный анализ образовательных программ и заполнить таблицу по следующей форме:

3. Проанализировать основные отличия в организации работы школы и детского сада, заполнить таблицу:

4. Изучить значение работы с родителями для математического развития дошкольников, формы работы с семьей.

5. Составить план консультаций для родителей по любому актуальному вопросу методики формирования элементарных математических представлений.

6. Ответить на контрольные вопросы.

Требования к содержанию отчета – отчет о выполненном задании оформляется письменно.

Контрольные вопросы

    Покажите актуальность проблемы преемственности в работе детского сада и школы в свете современных преобразований в системе образования в стране (ФГОС ДО и ФГОС НОО).

    В чем суть основных требований современной начальной школы к математическому развитию детей?

    На основе сравнительного анализа программ подготовительной группы и 1 класса начальной школы покажите преемственность в содержании обучения математике.

    Приведите примеры по осуществлению преемственных связей детского сада и школы. Раскройте своеобразие отдельных форм работы.

    Раскройте сущность форм и содержания совместной работы ДОУ с семьей по вопросам математического развития.

    Обоснуйте важность и необходимость научного подхода к изучению условий воспитания ребенка в семье.

1. Воронина Л.В., Утюмова Е.А. Современные технологии математического образования дошкольников: учеб. пособие / под общ. ред. Л.В. Ворониной. – Екатеринбург: УрГПУ, 2013. – 282 с.

2. Михайлова З.А. и др. Теории и технологии математического развития детей дошкольного возраста. - СПб.: «Детство - Пресс», 2008.

3. Примерная основная образовательная программа дошкольного образования «От рождения до школы» [Электронный ресурс]. - Режим доступа: http://www.firo.ru/?page_id=11684

4. Федеральный государственный образовательный стандарт дошкольного образования (от 17.10.2013г. № 1155)

5. Федеральный государственный образовательный стандарт начального общего образования (от 06.10.2009 г. № 373)

6. Щербакова Е.И. Теория и методика математического развития дошкольников: учебное пособие. - М.: Издательство НПО МОДЭК, 2005.

УДК 373.24 ББК 74.102.18

ГСНТИ 14.23.09

Код ВАК 13.00.02

Утюмова Екатерина Александровна,

старший преподаватель кафедры теории и методики обучения математике и информатике в период детства, Институт педагогики и психологии детства; 620017, г. Екатеринбург, пр-т Космонавтов, 26, к. 157; e-mail: [email protected].

КЛЮЧЕВЫЕ СЛОВА: алгоритм, алгоритмические умения, алгоритмическое мышление, алгоритмическая культура, алгоритмические способности, предпосылки к учебной деятельности, дошкольники, структура алгоритмических умений, условия формирования алгоритмических умений.

АННОТАЦИЯ. В данной статье выделяются условия формирования алгоритмических умений у детей дошкольного возраста в процессе обучения в дошкольном образовательном учреждении. Раскрывается понятие «алгоритмические умения» и обозначается их взаимосвязь с понятиями «алгоритмическое мышление», «алгоритмическая культура» и «алгоритмические способности». Автор отмечает, что алгоритмические умения являются первой ступенью формирования у обучаемых алгоритмической культуры и алгоритмических способностей. Научная новизна работы состоит в уточнении структуры алгоритмических умений дошкольников разных возрастных групп на каждом этапе их формирования. В структуре выделены такие блоки, как процессуальный, личностный, регулятивный и коммуникативный. Условиями формирования алгоритмических умений у дошкольников выступают: использование игр с правилами и организация игровой деятельности дошкольников по заданным воспитателем алгоритмам, создание развивающей предметно-пространственной среды, учет возрастных и индивидуальных особенностей детей среднего и старшего дошкольного возраста, обучение детей действиям контроля и оценки своей деятельности, интеграция в процессе формирования алгоритмических умений различных видов детской деятельности. Практическая значимость работы состоит в том, что результаты исследования могут быть использованы педагогами детских образовательных учреждений.

Utyumova Ekaterina Aleksandrovna,

Senior Lecturer of Department of Theory and Methods of Teaching Mathematics in the Period of Childhood, Institute of Pedagogy and Psychology of Childhood, Ural State Pedagogical University, Ekaterinburg, Russia.

KEYWORDS: algorithm, algorithmic skills, algorithmic thinking, algorithmic culture, algorithmic abilities, prerequisites to learning activities, preschool children, structure of algorithmic skills, conditions of formation of algorithmic skills.

ABSTRACT. The article defines the conditions for the formation of algorithmic skills of children in the learning process of preschool educational institutions. The article discloses the notion "algorithmic skills" and outlines their relationship to the notions of "algorithmic thinking", "algorithmic culture" and "algorithmic abilities". The author notes that algorithmic skills make up the first step in the formation of the students" algorithmic culture and algorithmic abilities. The scientific novelty of the work consists in clarifying the structure of algorithmic skills of preschool children of different age groups at each stage of their formation. Such blocks such as procedural, personal, regulative and communicative are singled out in this structure. The following conditions of formation of algorithmic skills in preschool children are identified: the use of games with rules and organization of play activities of preschool children according to the algorithms given by the teacher, creation of educational subject-spatial environment, taking into account the age and individual characteristics of children of junior and senior preschool age, teaching children to monitor and evaluate their activities, integration in the process of building the algorithmic skills of different types of kids activities. The practical value of research consists in the fact that the results of the study may be used by teachers of children"s educational institutions.

УСЛОВИЯ ФОРМИРОВАНИЯ АЛГОРИТМИЧЕСКИХ УМЕНИЙ У ДЕТЕЙ ДОШКОЛЬНОГО ВОЗРАСТА

THE CONDITIONS OF FORMATION OF ALGORITHMIC SKILLS OF PRESCHOOL CHILDREN

дошкольного образования прописаны итоговые результаты, целевые ориентиры, которые должны быть достигнуты каждым ребенком в процессе обучения в ДОУ. Сфор-мированность этих личностных и интеллектуальных качеств у будущих первоклассников необходима для развития у них предпосылок к учебной деятельности, которые являются основным показателем готовности дошкольника к обучению.

сии характерны кардинальные изменения на всех ее уровнях, характеризующиеся созданием единого образовательного пространства, направленного на развитие личности ребенка. Дошкольного обучение - это первое звено поступательного, непрерывного развития индивидуума, основной целью которого является достижение дошкольниками необходимого уровня для успешного освоения программ начальной школы. В Федеральном государственном образовательном стандарте © Утюмова Е. А., 2016

Исследования Я. Н. Белик, В. В. Давыдова, А. Н. Леонтьева, Д. Б. Эльконина, В. Н. Шадрикова о развитии предпосылок к

овладению учебной деятельностью детьми дошкольного возраста как необходимого условия преемственности обучения в ДОУ и начальной школе позволили выделить структуру данного понятия:

Возникновение познавательных мотивов, интересов и потребностей;

Принятие учебного задания;

Формирование способности удерживать цель деятельности на протяжении выполнения задачи;

Развитие умения планирования предстоящей деятельности, разбиения ее на отдельные шаги, этапы;

Освоение ребенком общих способов решения практических, интеллектуальных и познавательных задач;

Овладение действиями контроля и оценки полученного результата своей деятельности .

Эффективным средством развития предпосылок к учебной деятельности у детей в процессе обучения в ДОУ являются алгоритмы и формирование у дошкольников алгоритмических умений. Ведь алгоритм - это и есть способ принятия и удержания цели своей предстоящей деятельности, это последовательность шагов (операций) для осуществления решения практических и учебных задач. Овладение алгоритмом обеспечивает возможность переноса метода решения данной задачи на похожие задачи. Действия контроля, самоконтроля и коррекции также свойственно при алгоритмической деятельности людей.

О необходимости включения алгоритмической линии в содержание обучения периода детства писали Н. Я. Виленкин, Л. В. Воронина, С. Е. Царева и др. . С самого раннего возраста дети овладевают алгоритмами, знакомятся с последовательностью действий при поглощении пищи, умывании, с правилами дорожного движения, поведения за столом, на улице, гигиеническими правилами. В образовательной области «Познавательное развитие» при формировании элементарных математических представлений дошкольники знакомятся с алгоритмами построения сериаци-оннного ряда, счета, решения арифметических задач, измерения величин и т.д.

Алгоритм - это одно из древних, фундаментальных понятий математики, теории алгоритмов. В связи с информатизацией и технологизацией современного общества понятие «алгоритм» проникло в различные сферы жизни человека. А. А. Столяр дает интуитивно-содержательное определение этого понятия как предписание действий понятных и точных, порядка их выполнения для достижения решения любой задачи из определенного класса однотипных задач.

Различают три вида алгоритмов. Первый - линейный, когда последовательность действий выполняется в строго определенном порядке, однократно. Разветвляющийся алгоритм характеризуется тем, что существует условие, которое необходимо проверить, и если оно выполняется, то исполняется одна последовательность шагов, если нет, то другая. Циклический алгоритм содержит часть действий, которые необходимо повторить несколько раз, пока не будет реализовано некоторое условие.

Не каждая последовательность, план действий, правило являются алгоритмами, но они могут быть использованы на начальном этапе формирования у дошкольников алгоритмических умений.

Большая часть исследований современных авторов направлена на развитие алгоритмического мышления, стиля мышления (А. В. Копаев, А. А. Столяр, С. Е. Царева), на формирование алгоритмической культуры (М. П. Лапчик). В отечественной психолого-педагогической литературе стали обращаться и к проблеме развития алгоритмических способностей, входящих в структуру познавательных (Н. Б. Истомина, С. Д. Язвинская). Также в методике появились исследования (Л. В. Воронина, З. А. Михайлова, А. А. Столяр), которые обосновывают возможность и необходимость изучения понятия «алгоритм» и формирования алгоритмических умений у детей, начиная с дошкольного уровня обучения .

Анализ перечисленных выше исследований показал, что понятия «алгоритмические умения», «алгоритмическое мышление», «алгоритмические способности» и «алгоритмическая культура» тесно взаимосвязаны. Раскроим эти понятия.

Алгоритмические умения включают умения расчленять сложные действия на элементарные шаги и представлять их в виде организованной совокупности последних, умение планировать свои действия и строго придерживаться этого плана в своей деятельности, умения выражать свои действия понятными языковыми средствами (А. А. Столяр) .

Алгоритмическое мышление - это искусство рассуждать об алгоритмических процессах окружающей действительности, способность планировать свои действия, умение предвидеть различные сценарии и поступать соответственно им (С. Е. Царева) .

Алгоритмическую культуру в педагогической литературе понимают как обладание личностными качествами, способствующими пониманию алгоритмов, значения их в различных областях деятельности, включающее в себя также владение соответствующим мышлением (М. П. Лапчик) .

Специфические индивидуальные способности личности, выражающиеся в склонности мышления к нахождению обобщенных способов решения задач, к овладению обобщенными понятиями, правилами, направленными на быстрое и успешное достижение новых, значимых результатов в учебно-познавательной деятельности - это алгоритмические способности (С. Д. Язвинская) .

То есть для формирования алгоритмических способностей необходимо сначала сформировать у ребенка алгоритмические умения, затем алгоритмическое мышление. Развивать вместе с этим такие качества его личности, как активность, инициативность, настойчивость и самостоятельность, способность к рефлексии и переносу знаний в новые ситуации, тем самым формируя алгоритмическую культуру школьника. Затем, овладев еще и творческой составляющей при выполнении алгоритмических действий, у ребенка формируются алгоритмические способности.

Основываясь на анализе психолого-педагогической и методической литературы, мы пришли к выводу, что у дошкольников в процессе игровой деятельности, особенно используя игры с правилами, необходимо формировать представления о последовательности действий, о понятии «правило», «алгоритм». Нами была разработана методика формирования алгоритмических

умений у детей дошкольного возраста начиная со средней группы, которая включает в себя три этапа:

1 этап (средняя группа) - формирование у ребенка умения использовать линейные алгоритмы для решения образовательных задач;

2 этап (старшая группа) - обучение дошкольников выполнению алгоритмов всех видов, формирование первоначальных умений по составлению алгоритмов;

3 этап (подготовительная к школе группа) - закрепление алгоритмических умений, перенос усвоенных алгоритмов в различные образовательные области и виды деятельности .

Структура алгоритмических умений детей дошкольного возраста состоит из четырех блоков . Процессуальный блок отвечает за изучение свойств, видов, способов записи алгоритмов, за их исполнение и составление. Личностный направлен на осознание значимости новых знаний или способов деятельности. Регулятивный способствует формированию умения планировать, осуществлять контроль, самоконтроль и коррекцию своей деятельности. Коммуникативный блок развивает умения у дошкольников, взаимодействовать со взрослыми и между собой в процессе алгоритмической деятельности. Формирование компонентов алгоритмических умений у детей на каждом этапе представлено в таблице 1.

Таблица 1

Структура алгоритмических умений у детей дошкольного возраста

Этап формирования алгоритмических умений Процессуальный блок Личностный блок Регулятивный блок Коммуникативный блок

1. Подчиняться 1. Осознавать, что 1. Удерживать цель 1. Задавать вопросы

правилу в игре, ко- деятельность со- деятельности в случае непонима-

торое устанавлива- стоит из последова- непродолжитель- ния указаний вос-

ет воспитатель. тельных шагов, от- ное время питателя.

2. Слушать указа- дельных действий под руководством 2. Отражать в своей

ния воспитателя, 2. Условно пони- воспитателя. речи собственные

условно выполнять мать значимость 2. Попытки осуще- действия

его в процессе сво- исполнения пра- ствления контроля под руководством

ей деятельности. вил (алгоритмов) правильности вы- воспитателя.

3. Исполнять одно, для достижения ре- полнения двух, 3. Взаимодейство-

1 этап двух, трехшажные зультата. трехшажного алго- вать со сверстника-

(средняя последовательно- 3. Попытки сопод- ритма. ми и воспитателем

группа) сти действий чинения мотивов и 3. Выполнять про- в процессе игровой

(линейные оценивания новых стейший алгоритм деятельности.

алгоритмы). знаний, своей дея- по заданному вос-

4. Восстанавливать тельности с точки питателем плану

последовательность зрения усвоенных 4. Исправление

шагов с опорой на норм ошибок в простей-

карточки, содер- ших линейных

жащие действия последовательно-

показанного ранее стях действий

алгоритма. под руководством

воспитателя.

1. Выполнять 1.Понимать значи- 1. Удерживать цель 1.Самостоятельно

линейные алгорит- мость выполнения деятельности. отражать в речи

мы из семи-десяти алгоритмов для 2. Следовать задан- свои действия при

шагов. решения задач. ному плану с опо- выполнении алго-

2. Исполнять раз- 2. Подчинять сою рой на карточки- ритма.

ветвляющие и цик- роль в игре и моти- подсказки. 2.Задавать вопросы

лические алгорит- вы деятельности 3. Оценивать дос- при выполнении и

мы под руково- заданному правилу. тижение постав- создании простей-

дством воспитателя 3. Проявлять инте- ленной цели, пра- ших алгоритмов.

или с опорой на рес к созданию но- вильности выпол- З.Сотрудничать в

2 этап карточки- вых алгоритмов. ненных действий паре и небольшой

(старшая подсказки. под руководством группе в процессе

группа) 3. Создавать под воспитателя. игры под наблюде-

руководством вос- 4. Исправлять, нием воспитателя.

питателя простей- осуществлять кор-

шие алгоритмы для рекцию алгоритмов

достижения по- по требованию и

ставленной цели. под руководством

4. Использовать воспитателя.

блок-схемы как

подсказки при вы-

полнении алгорит-

мов всех видов.

1. Увеличении доли 1.Понимать значи- 1. Удерживать и ус- 1.Самостоятельно

самостоятельности мость выполнения ловно принимать отражать в речи

детей при выпол- алгоритмов для цель деятельности. свои действия при

нении и составле- решения познава- 2. Самостоятельно выполнении алго-

нии алгоритмов тельных задач. следовать приня- ритмов всех видов.

любого типа. 2. Проявлять инте- тому плану дея- 2.Сотрудничать в

2. Переносить из- рес к нахождению тельности. паре и небольшой

вестные алгоритмы общих способов 3. Соотносить выпол- группе в процессе

для решения по- (алгоритмом) ре- ненный алгоритм с игры и при выпол-

добных задач под шения задач одно- образцом при помо- нении познава-

3 этап руководством вос- го класса.. щи воспитателя. тельной задачи.

(подготови- питателя. 3. Оценивать свою 4. Корректировать 3. Выполнять раз-

тельная 3. Изменять алго- деятельность с точ- выполнение алго- личные роли в

группа) ритм при модифи- ки зрения обще- ритма в соответст- группе, попытки

кации условия, ис- принятых правил, вии с планом, ре- сотрудничать со

ходных данных под норм поведения.. зультатом при по- сверстниками и

руководством вос- мощи воспитателя. воспитателем в

питателя. 5. Оценивать своею процессе игровой и

4. Использовать ал- деятельность по познавательной

горитмы в различ- простейшему пла- деятельности.

ных видах деятель- ну, заданному вос- 5. Договариваться

ности детей. питателем и с его помощью, подсказками и коррекцией. друг с другом в игре, в том числе и в играх с правилами.

Таким образом, на основе анализа методической и психолого-педагогической литературы, возрастной периодизации Д. Д. Эльконина можно выделить в структуре алгоритмических умений не только умения выполнять алгоритмы любого вида и составлять простейшие алгоритмы, но и умения удерживать и принимать цель предстоящей деятельности, планировать свою работу, осуществлять оценку и контроль своих действий.

Для целенаправленного формирования у детей, начиная со средней группы, алгоритмических умений нужно соблюдать ряд условий.

1. Использовать игры с правилами и организовывать игровую деятельность дошкольников по заданным воспитателем условиям (алгоритмам). Например, в игре

«Зоопарк» можно выстроить систему правил: При покупке билета у воспитателя в зоопарк, дошкольник сначала должен произнести: «Здравствуйте», а потом протянуть деньги, попросить билет, взять билет, получить сдачу, пройти к контролеру, протянуть билет, зайти в зоопарк. Если последовательность действий (алгоритм) будет нарушен, то дошкольнику будет запрещено посещать зоопарк сегодня.

2. Для развития у ребенка различных умений, в том числе и алгоритмических, необходимо создание развивающей предметно-пространственной среды, при организации которой формирование алгоритмических умений происходит в деятельности, побуждающей к открытию «новых знаний», к переносу имеющегося алгоритмического опыта в новые ситуации.

Для закрепления умений составлять линейные алгоритмы целесообразно ввести новый персонаж - робота, которому дети будут сообщать команды. Чтобы робот выполнил команду, она должна быть очень четкой, а чтобы получился требуемый результат, необходим правильный порядок. В роли робота выступает воспитатель: «Робот» - это машина, которая слушается человека и выполняет все его команды. С этим персонажем педагоги организует игры, например, предложим роботу съесть мандаринку, которая лежит на столе. Воспитатель побуждает детей к действию: «Роботу необходимо поесть, чтобы подзарядиться энергией». Задает вопросы, побуждая детей к решению задания: «Что нам нужно сделать?», «Зачем роботу необходимо поесть?», «Повторите, какой мы должны получить результат». Для получения первичного алгоритма деятельности задает вопросы: «Что сначала должен сделать робот?», «Предложите последовательность действий», «Назовите недостающее действие». В процессе игры дети под руководством воспитателя создают алгоритм, сообщают роботу команды, а «робот» их исполняет: первая команда: «Возьми мандаринку», вторая «Съешь ее». Воспитатель должен объяснить и посмеяться, что с кожурой съест не получиться: «Какое действие мы пропустили?» Дети ответят: «Надо сначала очистить мандаринку, а потом ее съесть». «А помыть мандаринку не нужно?». Определились первые команды алгоритма. Затем робот показывает и говорит, что не знает, куда убрать кожуру. Дети советуют выбросить, робот бросает ее на пол. Дети исправляют команду: «Выброси в мусорное ведро». Получаем алгоритм деятельности робота «Робот ест мандарин-ку»:1. Возьми мандаринку со стола. 2. Помой ее. 3. Вытри руки. 4. Очисти ман-

даринку. 5. Съешь мандаринку. 6. Выброси кожуру в мусорное ведро. 7. Конец. Робот сообщает, что последней командой всегда должна быть команда «Конец», иначе он съест еще мандаринку, а затем еще и еще, пока дети его не остановят.

3. Учитывать возрастные и индивидуальные особенности детей среднего и старшего дошкольного возраста. Задания должны быть посильными, не слишком легкими и не слишком трудными, увлекательными и доступными для восприятия детей. Так, дети старшей группы еще не могут удерживать в памяти при выполнении игровой ситуации последовательность из большого числа действий. Поэтому используем игры с двух-, трехшажными правилами. Например, игра «Локомотив». Воспитатель-локомотив ездит по группе и, подъезжая к определенному дошкольнику, сигналит три раза. Только на третий гудок дошкольник-вагон прицепляется к локомотиву, доставив вагон на вокзал, воспитатель должен его отцепить, поэтому необходимо сначала остановиться, а затем после второго гудка вагон должен отцепиться. Если последовательность действий на каком-то этапе будет нарушена, то вагон отвозят в ремонтный завод.

В старшем дошкольном возрасте не всем детям сразу посильно выполнять разветвляющиеся, то есть алгоритмы с условием. Поэтому воспитатель использует различные средства-подсказки для усвоения алгоритмов данного вида. Например, игра «Сделай по условию»: воспитатель на доске изображает часть алгоритма с условием (рис. 1). Взрослый помогает дошкольнику, задает ему вопрос, показывает схему (схема кроме текста может содержать рисунок) и поясняет, что нужно сделать. Повторяет это действие еще с двумя детьми. После этого остальные дети должны выполнить не только условие, но и весь алгоритм полностью.

4. Для обучения дошкольников действиям контроля, самоконтроля и оценке своей деятельности необходимо завершать игру, игровое задание или игровую ситуации этапом контроля. Завершая игру, под непосредственным руководством воспитателя,

дети сравнивают полученную последовательность действий с эталоном, производят коррекцию, если необходимо, в своих алгоритмах. Воспитатель задает вопросы: «Достигли ли мы требуемого результата?», «Что мы сегодня научились делать?», «Все ли у

нас получилось?», «Зачем нам нужно было выполнять данную последовательность действий?», «Дайте оценку своей деятельности». Постепенно обучаемый увеличивает долю самостоятельности ребенка при оценке своих действий. Также необходимо использовать игры на исправление алгоритма, последовательности действий. Например, воспитатель-робот просит накормить его: не помыв руки, сначала требует суп, потом торт, компот, а затем пюре с сосиской. Взрослый анализирует, выполняют ли его требования дошкольники, чем они объясняют изменение алгоритма, аргументирует, почему так есть, как требует робот нельзя.

5. Интеграция в процессе формирования алгоритмических умений различных видов детской деятельности, перенос приобретенных умений в различные образовательные области и виды деятельности. Основная цель использования этого условия - это обеспечение осознанного выполнения детьми любого вида алгоритма. Воспитатель постепенно увеличивает долю самостоятельности в выполнении и состав-

лении алгоритма ребенком, побуждает в процессе выполнения различных видов детской деятельности самостоятельно осуществлять целеполагание, контроль, коррекцию и рефлексию выполнения и составления алгоритма. Для нахождения общих способов решения практических задач с использованием известных алгоритмов, для формирования умения изменять алгоритм при трансформации условий можно применять творческие игровые задания, а затем предложить проанализировать свою деятельность, отвечая, например, на вопросы: «Какие причины способствовали изменению алгоритма?», «Изменилась ли при этом цель деятельности?».

Учет всех выделенных условий в процессе формирования алгоритмических умений будет способствовать возникновению мотивации познавательной деятельности, целеполаганию, планированию, оценке, контролю своей деятельности, то есть будут оказывать влияние и на развитие предпосылок к учебной деятельности будущих первоклассников.

ЛИТЕРАТУРА

1. Белик Я. Н. Формирование предпосылок учебной деятельности старших дошкольников в аспекте преемственности дошкольного и начального общего образования: дис. ... канд. пед. наук. Челябинск, 2011.

2. Виленкин Н. Я., Дробышев Н. Я. Воспитание алгоритмического мышления на уроках математики // Начальная школа. 1988. № 12. С. 34-37.

3. Воронина Л. В., Утюмова Е. А. Развитие универсальных предпосылок учебной деятельности дошкольников посредством формирования алгоритмических умений // Образование и наука. 2013. № 1. С. 74-844. Воронина Л. В., Утюмова Е. А. Современные технологии математического образования дошкольников: учебное пособие; под общ. ред. Л. В. Ворониной. Екатеринбург: Урал. гос. пед. ун-т, 2013. 282 с.

5. Давыдов В. В. Генезис и развитие личности в детском возрасте // Вопросы психологии. 1992. № 1. С. 22-33.

6. Детство: Примерная основная общеобразовательная программа дошкольного образования / Т. И. Бабаева, А. Г. Гогоберидзе, З. А. Михайлова и др. СПб. : ДЕТСТВО-ПРЕСС, 2011. 201 с.

7. Истомина Н. Б. Методика обучения математике в начальной школе. Развивающее обучение. Смоленск: Ассоциация XXI века, 2009. 287 с.

8. Копаев А. В. О практическом значении алгоритмического стиля мышления. // Информационные технологии в общеобразовательной школе. 2003. № 6. С. 6-11.

9. Лапчик М. П. Методика преподавания информатики: учебное пособие для студ. пед. вузов. М. : Академия, 2003. 624 с.

10. Леонтьев А. А. Что такое деятельностный подход в образовании? // Начальная школа: плюс-минус. 2001. № 1. С. 3.

11. Приказ Минобрнауки России от 17.10.2013 № 1155 «Об утверждении федерального государственного образовательного стандарта дошкольного образования» (Зарегистрировано в Минюсте России 14.11.2013 № 30384).

12. Формирование элементарных математических представлений у дошкольников: учебное пособие для студ. пед. институтов / под ред. А. А. Столяра. М. : Просвещение, 1988. 303 с.

13. Царева С. Е. Методика преподавания математики в начальной школе: учебник для студ. учреждений высш. образования. М. : Академия, 2014. 496 с.

14. Шадриков В. Д. Деятельность и способности. М. : Логос, 1994. 320 с.

15. Эльконин Д. Б. Психология игры. 2-е изд. М. : ВЛАДОС, 1999. 360 с.

16. Язвинская С. Д. Педагогические условия развития алгоритмических способностей детей старшего дошкольного возраста в процессе познания категории времени: дис. . канд. пед. наук. Ставрополь, 2009.

1. Belik Ya. N. Formirovanie predposylok uchebnoy deyatel"nosti starshikh doshkol"nikov v aspekte preemstvennosti doshkol"nogo i nachal"nogo obshchego obrazovaniya: dis. ... kand. ped. nauk. Chelyabinsk, 2011.

2. Vilenkin N. Ya., Drobyshev N. Ya. Vospitanie algoritmicheskogo myshleniya na urokakh matematiki // Nachal"naya shkola. 1988. № 12. S. 34-37.

3. Voronina L. V., Utyumova E. A. Razvitie universal"nykh predposylok uchebnoy deya-tel"nosti doshkol"nikov posredstvom formirovaniya algoritmicheskikh umeniy // Obrazovanie i nauka. 2013. № 1. S. 74-84.

4. Voronina L. V., Utyumova E. A. Sovremennye tekhnologii matematicheskogo obrazovaniya doshkol"nikov: uchebnoe posobie; pod obshch. red. L. V. Voroninoy. Ekaterinburg: Ural. gos. ped. un-t, 2013. 282 s.

5. Davydov V. V. Genezis i razvitie lichnosti v detskom vozraste // Voprosy psikhologii. 1992. № 1. S. 22-33.

6. Detstvo: Primernaya osnovnaya obshcheobrazovatel"naya programma doshkol"nogo obrazovaniya / T. I. Babaeva, A. G. Gogoberidze, Z. A. Mikhaylova i dr. SPb. : DETSTVO-PRESS, 2011. 201 s.

7. Istomina N. B. Metodika obucheniya matematike v nachal"noy shkole. Razvivayushchee obuchenie. Smolensk: Assotsiatsiya XXI veka, 2009. 287 s.

8. Kopaev A. V. O prakticheskom znachenii algoritmicheskogo stilya myshleniya. // Informatsionnye tekhnologii v obshcheobrazovatel"noy shkole. 2003. № 6. S. 6-11.

9. Lapchik M. P. Metodika prepodavaniya informatiki: uchebnoe posobie dlya stud. ped. vuzov. M. : Akademiya, 2003. 624 s.

10. Leont"ev A. A. Chto takoe deyatel"nostnyy podkhod v obrazovanii? // Nachal"naya shkola: plyus-minus. 2001. № 1. S. 3.

11. Prikaz Minobrnauki Rossii ot 17.10.2013 № 1155 «Ob utverzhdenii federal"nogo gosudarstvennogo obrazovatel"nogo standarta doshkol"nogo obrazovaniya» (Zaregistrirovano v Minyuste Rossii 14.11.2013

12. Formirovanie elementarnykh matematicheskikh predstavleniy u doshkol"nikov: uchebnoe posobie dlya stud. ped. institutov / pod red. A. A. Stolyara. M. : Prosveshchenie, 1988. 303 s.

13. Tsareva S. E. Metodika prepodavaniya matematiki v nachal"noy shkole: uchebnik dlya stud. uchrezhdeniy vyssh. obrazovaniya. M. : Akademiya, 2014. 496 s.

14. Shadrikov V. D. Deyatel"nost" i sposobnosti. M. : Logos, 1994. 320 s.

15. El"konin D. B. Psikhologiya igry. 2-e izd. M. : VLADOS, 1999. 360 s.

16. Yazvinskaya S. D. Pedagogicheskie usloviya razvitiya algoritmicheskikh sposobnostey detey starshego doshkol"nogo vozrasta v protsesse poznaniya kategorii vremeni: dis. ... kand. ped. nauk. Stavropol", 2009.

Ирина Стоякина

воспитатели Стоякина Ирина Александровна

Костарева Ирина Михайловна

МАДОУ «Детский сад №6» г. Перми

В основе реализации основной образовательной программы дошкольного образования стоят задачи социализации и индивидуализации ребенка- дошкольника. Это соответствует принципам ФГОС ДО, одним из которых является принцип психолого- педагогической поддержки детей. Чтобы технологически реализовать задачи ООП ДО и ФГОС ДО в области социально-коммуникативного развития, мы создали алгоритмы, способствующие формированию культурно-гигиенических норм и правил.

Создавая свои алгоритмы мы преследовали следующие задачи:

1. Приобщение детей дошкольного возраста к социокультурным нормам, традициям семьи, общества, государства.

2. Развитие у детей младшего возраста элементов культурного поведения, элементов самообслуживания и самостоятельности.

3. Воспитание чувства уважения к труду взрослых, желание помогать.

При создании алгоритмов для детей младшего и среднего дошкольного возраста мы учитывали следующее:

1. Особенности мышления и восприятия детей

(наглядно – действенное). Поэтому все объекты, используемые в наших алгоритмах реальные, не символичные. Объекты доступны детскому восприятию.

2. Композиция иллюстрации не должна быть перегружена.

3. Цветовая гамма в сдержанных тоннах.

4. Дети знакомятся с содержанием уже готового алгоритма или активно участвуют в его создании.

Наши алгоритмы созданы в технике комикса, что позволяет детям легко воспринимать сложные социокультурные нормы.

Данный педагогический опыт позволяет сформировать у детей предпосылки к символическому и знаковому восприятию алгоритма, так как нас по всюду в жизни окружают символы и знаки (дорожные знаки, социокультурные знаки и пр.)

Использование алгоритмов позволяет реализовать задачи ООП и ФГОС ДО по формированию у детей младшего и среднего дошкольного возраста элементов самостоятельности, элементов самообслуживания и элементов культурного поведения.

Наши алгорпитмы

1. Приучать детей следить за своим видом

2. Продолжать учить детей пользоваться мылом и полотенцем

3. Формировать элементарные навыки за столом: правильно держать ложку, вилку, пользоваться салфеткой


4. Формировать элементарные навыки за столом: не крошить хлеб, пережевывать пищу с закрытым ртом, не разговаривать.

5. Дать представление о здоровой и полезной пище


6. Овладение навыком пользования носовым платком

7. Формирование навыка прикрывать рот рукой во время кашля

8. Следить за своей одеждой


9. Приучать самостоятельно одеваться и раздеваться в определенной последовательности

10. Приобщать дошкольников к здоровому образу жизни

Публикации по теме:

Формирование творческой инициативы в младшем дошкольном возрасте посредством конструирования Статья: Формирование творческой инициативы в младшем дошкольном возрасте посредством конструирования. Основополагающим требованием общества.

Использование здоровьесберегающих технологий в младшем дошкольном возрасте. Самомассаж и развитие крупной моторики Раннее детство - ответственный период, когда закладываются основы развития ребенка, его здоровья. Именно двигательная активность детей в.

Игра – это ведущий вид деятельности у детей. Через сюжетно-ролевые игры ребенок познает мир, учится общению. Через игру ребенок готовится.

Тема игры: «Домино» База реализации игры: МДОБУ детский сад «Буратино» с. Буганак Участники игры: дети младшей группы, воспитатели, родители.

НОД «К нам весна шагает быстрыми шагами» по формированию целостной картины мира в среднем дошкольном возрасте Цель: Закрепить знание о весенних изменениях в природе. Познакомить с признаками весны. Уточнить и расширить представление об изменениях.

Формирование алгоритмических умений у дошкольников

Консультация для воспитателей детского сада.

Темных Анна Владимировна,

Воспитатель МБДОУ г. Мурманска № 95

Математическому образованию в настоящее время отводится особая роль, так как математика относится к весьма значимым для динамично развивающегося современного технологического общества областям знаний, накопленных и широко используемых человечеством.

Под математическим образованием периода детства понимается целенаправленный процесс обучения математике и воспитания математической культуры, ориентированный на подготовку детей к применению необходимых математических знаний и умений в процессе жизнедеятельности.

Особое значение при этом имеет ознакомление дошкольников с алгоритмами и усвоение ими алгоритмических умений. Ведь алгоритм – это и есть правило, образец выполнения в строгой последовательности некоторой системы операций, которая ведет к решению задач определенного типа. В процессе выполнения алгоритма развивается умение не упускать из виду цель, не забывать о ней на протяжении всего выполняемого задания, а после получения результата оценить его правильность и, если необходимо, осуществить коррекцию. В течение всего времени, работая с алгоритмом, ребенок учится управлять своей деятельностью в соответствии с предлагаемым взрослым правилом или образцом.

В зависимости от структуры выполняемых в алгоритме действий различают три вида алгоритма: линейный, разветвляющийся и циклический.

Линейный алгоритм , это алгоритм, в котором все действия выполняются однократно, последовательно, в заданном порядке. Например, алгоритм кормления рыб в аквариуме: 1) взять корм, 2) открыть крышку аквариума, 3) насыпать корм в кормушку, 4) закрыть крышку аквариума, 5) постучать по стенке аквариума.

Циклический алгоритм – это алгоритм, в котором определенная последовательность действий повторяется несколько раз, пока не будет выполнено заданное условие. Многие процессы в окружающей нас жизни основаны на многократном повторении одних и тех же действий: смена времен года, дня и ночи, восхода и захода солнца.

Разветвляющийся алгоритм – это алгоритм, в котором проверяется некоторое условие: если оно выполняется, то осуществляется одна последовательность действий, если нет, то другая. Например, алгоритм разделения красных и синих шаров: 1) берем шар; 2) проверяем условие – «Шар красный?», 3) если да, то кладем шар в правую корзину, если нет, то в левую.

Анализ психолого-педагогических предпосылок формирования алгоритмических умений у детей дошкольного возраста показывает, что дети 4-го года жизни еще не способны к усвоению алгоритмов, они не могут продолжительное время удерживать цель и план деятельности, точно следовать образцу, инструкции, основы алгоритмической деятельности для них еще трудны. Поэтому в этом возрасте необходимо только проводить подготовительную работу по формированию данных умений. Маленьких детей знакомят с последовательностью мытья рук, представляющей собой линейный или циклический алгоритм в зависимости от загрязненности рук. Под руководством воспитателя в процессе игровой деятельности необходимо целенаправленно осваивать с дошкольниками нормы и правила поведения за столом во время еды, правила умывания, культурно-гигиенических навыки по использованию предметов личной гигиены, то есть выполнять действия, носящие алгоритмический характер.

Целенаправленная же работа по формированию алгоритмических умений должна начинаться 5-го года жизни и включать три этапа:

на первом (средняя группа) идет формирование умений у детей выполнять линейные алгоритмы, осмысление значимости их выполнения в повседневной жизни и в процессе образовательной деятельности;

на втором этапе (старшая группа) детей обучают выполнять не только линейные, но и разветвляющиеся, циклические алгоритмы, а также формируются первоначальные умения по составлению алгоритмов различных видов;

на третьем (подготовительная к школе группа) происходит закрепление алгоритмических умений, которые приобрели дошкольники в процессе образовательной, игровой деятельности, прогулок, обеспечение осознанного выполнения ими любого алгоритма, постепенное увеличение доли самостоятельности в его выполнении и составлении, развитие у детей алгоритмических умений, применение алгоритмической деятельности в различных образовательных областях, формирование умения осуществлять целеполагание, контроль, коррекцию и рефлексию. На каждом этапе формирования алгоритмических умений для эффективного развития универсальных предпосылок учебной деятельности у детей в процессе игры или при выполнении учебно-игровых ситуаций производится постепенная интеграция игровой и учебной деятельности.

На первом этапе (в средней группе) термины «алгоритм», правила», «план» не вводятся. Педагог сообщает детям определенный алгоритм (только линейный), одновременно показывая называемые действия. Например, последовательность изготовления бутерброда. Затем просит 1-2 детей показать, что они запомнили и как правильно сделать бутерброд. Можно подготовить карточки с нарисованными предметами и действиями и попросить детей расставит карточки по порядку. Детям дается установка на запоминание последовательности действий. Следует учить детей сопровождать свои действия речью, а педагог должен помогать им в этом, сопровождая действия детей комментариями.

На занятиях по математике дети также знакомятся с различными линейными алгоритмами:

правилами выполнения приемов наложения и приложения

правилами счета

алгоритмом сравнения по величине

выполнения сериации

На втором этапе (старшая группа), идет работа по формированию у детей умений составлять различные алгоритмы (линейные, разветвляющиеся и циклические).

Начинать обучение следует с линейных алгоритмов. В качестве подготовительных упражнений, способствующих формированию у детей умений строить алгоритмы, используют игры-упражнения на выстраивание последовательности событий, например, такие, как: «А что было дальше?», «Кто знает, тот дальше сказку продолжает». Во время игры вызванный ребенок может сказать 1-2 предложения, затем продолжает другой ребенок. Для того чтобы облегчить рассказывание, можно предложить набор картинок. Для закрепления умений составлять алгоритмы целесообразно ввести новый объект – робота (воспитатель), которому дети будут давать команды. Робот необходим для того, чтобы показать детям, что команды должны быть четкими и в правильном порядке.

Для закрепления детям можно предложить алгоритмы, в которых пропущены какие-либо действия, нарушен их порядок, либо предлагается самостоятельно составить алгоритм какого-либо действия.

После того как дети научились работать с линейными алгоритмами, необходимо познакомить их с разветвляющимися.

Перед ознакомление необходимо провести подготовительную работу, включающую игру «да-нет»: воспитатель говорит, что в речи иногда употребляются вопросы, на которые достаточно ответить только «да» или «нет», например, «Вы уже завтракали?» (Ребята сами придумывают такие вопросы и задают их друг другу). Затем воспитатель говорит, что имеются и такие вопросы, на которые нельзя ответить только «да» или «нет», например, «Сколько тебе лет?» и предлагает каждому ребенку придумать такой вопрос и задать кому-нибудь из детей.

Затем детям предлагается игра «Сделай по условию» - воспитатель на доске изображает часть алгоритма, содержащую какое-либо условие, вызывает одного ребенка, задает ему вопрос и говорит, что нужно сделать. Далее вызывает другого ребенка, также задает вопрос и показывает, что надо сделать. После этого остальные дети должны встать согласно алгоритму. Условия могут быть разными: «У тебя длинные волосы?», «Ты в шортах?» и т.п. Меняя условия, воспитатель добивается понимания того, что в зависимости от ответа на вопрос условия, выполняется то или иное действие.

После того как дети усвоили разветвляющийся алгоритм, можно переходить к циклическому алгоритму. Самый простой вариант циклического алгоритма – это построение сериационных рядов. Поэтому сначала целесообразно выполнить с детьми следующее задание: воспитатель кладет на стол несколько лент (4-5) и предлагает расположить ленточки по длине от самой длинной к самой короткой. В результате обсуждения дети вспоминают алгоритм построения сериационного ряда, но главное на данный момент записать этот алгоритм в виде блок-схемы, обратив внимание детей, что некоторые действия повторяются несколько раз. Поэтому же алгоритму можно расставить числа по возрастанию, буквы по алфавиту, игрушки по высоте.

Закрепление приобретенных алгоритмических умений (третий этап обучения ) осуществляется в учебной и игровой деятельности. Ребенок, получив какое-либо задание, для его выполнения применяет известный ему алгоритм, однако если он не знает соответствующего алгоритма, то может попытаться составить его самостоятельно.

Для целенаправленного формирования у детей алгоритмических умений нужно соблюдать ряд условий.

1. Использование игры с правилами и организовывать игровую деятельность дошкольников по заданным воспитателем условиям (алгоритмам).

Например, в игре «Зоопарк» можно выстроить систему правил: При покупке билета у воспитателя в зоопарк, дошкольник сначала должен произнести: «Здравствуйте», а потом протянуть деньги, попросить билет, взять билет, получить сдачу, пройти к контролеру, протянуть билет, зайти в зоопарк. Если последовательность действий (алгоритм) будет нарушен, то дошкольнику будет запрещено посещать зоопарк сегодня.

2. Создание развивающей предметно-пространственной среды.

При организации, которой формирование алгоритмических умений происходит в деятельности, побуждающей к открытию «новых знаний», к переносу имеющегося алгоритмического опыта в новые ситуации. Для закрепления умений составлять линейные алгоритмы целесообразно ввести новый персонаж – робота, которому дети будут сообщать команды. Чтобы робот выполнил команду, она должна быть очень четкой, а, чтобы получился требуемый результат, необходим правильный порядок. В роли робота выступает воспитатель: «Робот» – это машина, которая слушается человека и выполняет все его команды. С этим персонажем педагоги организует различные игры .

3. Учет возрастных и индивидуальных особенностей детей среднего и старшего дошкольного возраста.

Задания должны быть посильными, не слишком легкими и не слишком трудными, увлекательными и доступными для восприятия детей. Так, дети старшей группы еще не могут удерживать в памяти при выполнении игровой ситуации последовательность из большого числа действий. Поэтому используем игры с двух-, трехшажными правилами. Например, игра «Локомотив». Воспитатель-локомотив ездит по группе и, подъезжая к определенному дошкольнику, сигналит три раза. Только на третий гудок дошкольник-вагон прицепляется к локомотиву, доставив вагон на вокзал, воспитатель должен его отцепить, поэтому необходимо сначала остановиться, а затем после второго гудка вагон должен отцепиться. Если последовательность действий на каком-то этапе будет нарушена, то вагон отвозят в ремонтный завод.

4. Обучение дошкольников действиям контроля, самоконтроля и оценке своей деятельности.

Необходимо завершать игру, игровое задание или игровую ситуации этапом контроля. Завершая игру, под непосредственным руководством воспитателя, дети сравнивают полученную последовательность действий с эталоном, производят коррекцию, если необходимо, в своих алгоритмах. Воспитатель задает вопросы: «Достигли ли мы требуемого результата?», «Что мы сегодня научились делать?», «Все ли у нас получилось?», «Зачем нам нужно было выполнять данную последовательность действий?», «Дайте оценку своей деятельности». Постепенно обучаемый увеличивает долю самостоятельности ребенка при оценке своих действий. Также необходимо использовать игры на исправление алгоритма, последовательности действий. Например, воспитатель-робот просит накормить его: не помыв руки, сначала требует суп, потом торт, компот, а затем пюре с сосиской. Взрослый анализирует, выполняют ли его требования дошкольники, чем они объясняют изменение алгоритма, аргументирует, почему так есть, как требует робот нельзя.

5. Интеграция различных видов детской деятельности, перенос приобретенных умений в различные образовательные области и виды деятельности.

Основная цель использования этого условия – это обеспечение осознанного выполнения детьми любого вида алгоритма. Воспитатель постепенно увеличивает долю самостоятельности в выполнении и составлении алгоритма ребенком, побуждает в процессе выполнения различных видов детской деятельности самостоятельно осуществлять целеполагание, контроль, коррекцию и рефлексию выполнения и составления алгоритма. Для нахождения общих способов решения практических задач с использованием известных алгоритмов, для формирования умения изменять алгоритм при трансформации условий можно применять творческие игровые задания, а затем предложить проанализировать свою деятельность, отвечая, например, на вопросы: «Какие причины способствовали изменению алгоритма?», «Изменилась ли при этом цель деятельности?».

Учет всех выделенных условий в процессе формирования алгоритмических умений будет способствовать возникновению мотивации познавательной деятельности, целеполаганию, планированию, оценке, контролю своей деятельности, то есть будут оказывать влияние и на развитие предпосылок к учебной деятельности будущих первоклассников.

Литература:

  1. Воронина Л. В. Развитие творческого потенциала дошкольников через формирование у них алгоритмических умений // Педагогические системы развития творчества: материалы 10-й Междунар. науч.-практ. конф. (Екатеринбург, 13-14 декабря 2011г.).. Екатеринбург, 2011. Ч. 1. С. 135-140.
  2. Воронина Л. В., Утюмова Е. А. Развитие универсальных предпосылок учебной деятельности дошкольников посредством формирования алгоритмических умений // Образование и наука. 2013. № 1. С. 74-84.
  3. Родионова О. Н. Развитие алгоритмической культуры личности дошкольника // Известия Рос. Гос. Пед. ун-та им. А. И. Герцена. 2008. № 69. С 473-476.
  4. Формирование элементарных математических представлений у дошкольников: учебное пособие для студ. пед. институтов / под ред. А. А. Столяра. М. : Просвещение, 1988.303 с.

5. Методика развития моделирования у детей дошкольного возраста.

6. Реализация идеи интеграции в логико-математическом развитии дошкольников

7. Логико-математическое и экономическое развитие дошкольников

8. Логико-математическое развитие и освоение краеведческих представлений дошкольниками

9. Логико-математическое и речевое развитие дошкольников

10. Логико-математическое и физическое развитие дошкольников

11. Логико-математическое и художественно-эстетическое развитие дошкольников

12. Логико-математическое и социально-личностное развитие дошкольников

1. Развитие понимания сохранения количества и величины у детей дошкольного возраста

Осуществляя целенаправленное различение, называние, упо­рядочивание и сравнение свойств, ребенок учится устанавливать взаимосвязи относительно признаков форм, количеств и выра­жать их с помощью языковых средств. При определении взаимо­связей дети дошкольного возраста опираются в основном на соб­ственный опыт, который, однако, организуется взрослыми.

Когда речь идет об обучении дошкольников, имеется в виду не прямое обучение логическим операциям и отношениям, а под­готовка детей посредством практических действий к усвоению смысла слов, обозначающих эти операции и отношения.

В развитии элементов логико-математического мышления ре­бенка есть важная граница, которую большинство детей переходят между 5 и 8 годами, - понятие о сохранении. Понимание сохране­ния количества создает предпосылку для формирования понятия о количественном числительном.

Понятие о сохранении требует осознания детьми того факта, что определенные свойства (например, количество, масса) не ме­няются при изменении других свойств (плотности расположения элементов, формы).

Всемирно известный швейцарский психолог Жан Пиаже обо­снованно считал, что понимание сохранения объекта в процессе изменения его формы составляет важное условие всякой рацио­нальной деятельности, необходимое условие математического мышления.

Процедура постановки задач Пиаже на сохранение следующая. Ребенку показывают два совершенно одинаковых предмета или два совершенно одинаковых набора предметов (два одинаковых шари­ка или две одинаковых колбаски из пластилина; два одинаковых стакана, заполненные одинаковым количеством воды; два ряда, со­держащие одинаковое количество каких-либо предметов; две оди­наковые палочки, расположенные параллельно и так, что их концы совпадают; два одинаковых предмета одинакового веса). Ребенка просят оценить количество пластилина в объектах, воды в стаканах, предметов в рядах, массы объектов и длины палочек.

После того как правильная оценка получена, экспериментатор на глазах у ребенка трансформирует один из стимулов: раскатыва­ет, сжимает или расплющивает один из кусочков пластилина, переливает воду из одного из стаканов в стакан другой формы и размера, раздвигает или приближает друг к другу объекты в одном из рядов, сдвигает палочки так, что совпадение их концов нару­шается. То есть сначала показываемые ребенку объекты одинако­вы по всем своим свойствам, а после трансформации - только по одному из свойств, сохранение которого проверяется (количество пластилина в кусочках; длина палочек, количество предметов в рядах). Что же касается других свойств, то теперь их значения в двух объектах становятся разными. Эти различия могут быть опи­саны как различия по форме и пространственным отношениям, а более детально - как различия по элементам формы - по длине, толщине, высоте, ширине, конфигурации, плотности объектов в рядах, взаимном расположении предметов и рядов. После этого ребенка опять просят оценить равенство или неравенство объек­тов по тем же свойствам, равенство которых признавалось до трансформации. Если теперь ребенок отрицает равенство по тем свойствам, которые не изменялись при трансформации, то такой ребенок «не сохраняет» количество, длину, вес.

Например, вы можете показать ребенку два равных ряда буси­нок и спросить, одинаковы ли они. Если ребенок понимает, о чем вы спрашиваете, он ответит «да». Если затем изменить один ряд, и спросить, остались ли ряды одинаковыми или в одном ряду стало больше бусинок, ребенок может ответить, что в длинном ряду бу­синок больше. Это означает, что он не обратил внимания на не­изменность количества бусинок и использовал длину ряда в каче­стве ключа.

Ребенок, начинающий овладевать понятием сохранения коли­чества, скажет, что оба ряда имеют одинаковое количество буси­нок, потому что в рядах по 5 бусинок - или просто потому что ничего не добавили и не убрали. Ребенок, владеющий понятием сохранения, скажет, что в обоих рядах находится одинаковое ко­личество бусинок, независимо от того, что сделает воспитатель - расположит их определенным рисунком или разложит на кучки.

Аналогичным образом проводится опыт с водой или другой жидкостью. Ребенку показывают две одинаковые банки с жидко­стью, а затем переливают жидкость одной из них в высокую узкую или в широкую банку ил и в две меньшие банки. Если ребенок усво­ил понятие сохранения вещества, он скажет, что после перелива­ния в другой банке содержится такое же количество жидкости.

Можно сделать два равных шарика из пластилина, а затем рас­катать один из них в жгутик или превратить его в блинчик или же в два шарика меньших размеров. Ребенок, освоивший понятие со­хранения, способен понять, что в нераскатанном и в раскатанном шарике одно и то же количество пластилина при условии, что ни­чего не добавили и ничего не убавили.

Таким образом, сущность сохранения проявляется в ситуациях преобразования объектов. Сначала предъявляемые ребенку объек­ты одинаковы по всем своим свойствам, а после трансформа­ции - только по одному из свойств, сохранение которого прове­ряется.

Сохранение количества дискретных твердых предметов (бусин, пуговиц, чашек) в наборе можно установить счетом. При этом можно менять взаимное расположение элементов, составляющих набор, но не сами эти элементы. Деформируемые, непрерывные материалы (жидкости, глина, бечевка, резиновая лента) не подда­ются счету. Меру им можно придать только с помощью измеритель­ных устройств: линеек, весов, градуированных емкостей и др. Вот почему раньше приобретается понятие о сохранении количества вещества, затем - массы и в последнюю очередь - объема.

Ж. Пиаже определил три последовательные стадии в развитии у детей способности к сохранению.

Первая стадия (стадия несохранения) - это глобальное каче­ственное сравнение. На этой стадии параметр (масса, количество, размер) еще не отделяется ребенком от других свойств предмета. Поэтому дети, например, не способны подобрать столько же эле­ментов, сколько их содержится в предъявленном множестве. Они приблизительно воспроизводят общую форму предъявленной со­вокупности, тогда как количество объектов во второй совокупно­сти может быть большим или меньшим, чем в первой. Например, линейные ряды копируются по их длине, независимо от плотно­сти элементов в ряду.

На этой стадии дети утверждают, что количество вещества, его вес и объем изменяются при изменении формы глиняного шарика или сосуда, в который переливается вода или пересыпаются буси­ны. Если шарик превращается в более длинную колбаску, они го­ворят, что в нем стало больше глины, что он стал тяжелее и что вода в сосуде, в которую его опустят, поднимется выше. Если воду перелили в более высокий и тонкий сосуд так, что ее уровень стал выше, чем в стандартном, дети говорят, что в новом сосуде воды стало больше и т. п.

Таким образом, на первой стадии ребенок может правильно оценить объект только в конкретной ситуации на основе непо­средственного восприятия предметов.

Вторая стадия развития (неустойчивое сохранение) характе­ризуется неустойчивостью ответов и тем, что дети утверждают со­хранение количества, величины при незначительных трансфор­мациях объектов и отрицают сохранение при больших трансфор­мациях. Например, когда произведенная трансформация формы глиняного шарика невелика или когда второй сосуд не очень от­личается от стандартного, дети говорят, что вещества (массы, объема) осталось столько же. Но когда трансформация формы более значительна, вновь даются ответы о несохранении. На этой стадии старший дошкольник способен отвлекаться от наиболее ярких свойств и может оценивать отношения между предметами на основе менее заметных, скрытых свойств, т. е. опосредованно. Например, он уже знает, что раздвинутые пальцы ладони хотя и занимают больше места в пространстве, чем сжатые кулаки, но между ними при этом увеличивается лишь расстояние.

Наконец, на третьей стадии (стадии сохранения) дети уве­ренно проявляют понимание сохранения при любых трансформа­циях. Дети, находящиеся на этой стадии, ясно понимают, что ко­личество элементов в двух совокупностях остается одинаковым, как бы экспериментатор ни изменял форму и площадь созданных ими конфигураций.

Усвоение понятия сохранения тесно связано с общей способ­ностью ребенка мыслить и рассуждать, дифференцировать разные свойства и избирательно оперировать каким-либо из них, абстра­гируясь от других. Дифференциация разных свойств, умение выра­зить их в речи - длительный процесс, растягивающийся на годы.

Вначале, когда такой дифференциации нет, восприятие объ­ектов интегрально, и столь же интегрально представлены свойства в высказываниях детей. Отсюда - все феномены несохранения, характерные для первой стадии. Количественные свойства объек­тов (количество вещества, масса, объем) еще не выделены в вос­приятии и в речи из их общей формы, слиты с ней. При этом в силу глобальности и малой расчлененности самой формы, как в восприятии, так и в высказываниях, при оценке и сравнении ко­личеств принимается во внимание только наиболее резко высту­пающие, «бросающиеся в глаза» качества формы: длина колбаски или площадь поверхности, высота столбика воды в сосуде. По этим свойствам выносятся первые грубые суждения детей: больше, меньше, равно. Менее выступающие и меньше бросающиеся в глаза особенности формы, такие как толщина колбаски и глиня­ной лепешки (когда она невелика и явно меньше высоты), не ока­зывают влияния на суждения о величине.

В дальнейшем, когда восприятие и речь детей становятся более дифференцированными, они могут сравнить величины по одной, но по разным особенностям формы. Отсюда возмож­ность неустойчивых рассуждений. Вместе с тем, когда определен­ное количество уже начинает выделяться из «упаковки», не очень большие изменения формы могут не сказываться на оценках ве­личины, в отличие от значительных ее трансформаций. Отсюда - еще один источник неустойчивости рассуждения детей на второй стадии. Только на третьей стадии в результате длительного про­цесса «освобождения» от внешних несущественных признаков количество становится инвариантным при любых изменениях формы, что обеспечивает его устойчивое сохранение.

Проведенное Л. Ф. Обуховой и П. Я. Гальпериным исследова­ние показало, что развитие умения выделять в сравниваемых объ­ектах разные свойства и каждое из них измерять с помощью какой-то избранной мерки представляет собой необходимое усло­вие для формирования у детей полноценного знания о принципе сохранения.

Американский психолог Дж. Брунер установил, что если 5- 6-летних детей, не обнаруживших понимания принципа сохра­нения, тренировать в обратном преобразовании предмета, на­пример из «колбаски» снова сделать шарик, и при этом ставить перед ребенком вопрос «Получились одинаковые шарики?», то после серии таких тренировок у большинства детей обнаружи­вается понимание принципа сохранения, т. е. они переходят с первой на третью стадию развития познавательной способности оценки величин и количеств.

Все эти факты свидетельствуют о том, что целенаправленное обучение способствует освоению понятия сохранения дошколь­никами. Основной путь в таком обучении - развитие умения дифференцировать разные свойства, что достигается через разви­тие у детей действия сравнения, освоение ими операций сериации и классификации. Овладение счетом и измерением также способ­ствует развитию понимания сохранения количества, величины.

Как отмечают многие исследователи, обучая сохранению, важно создавать ситуации, в которых ребенок оказывается в по­знавательном конфликте. Например, если ребенок склонен пола­гать, что удлинение шарика увеличивает количество пластилина, а убавление (отщипывание) кусочка уменьшает его количество, необходимо произвести сразу и одну, и другую операции. Это за­ставит ребенка колебаться между взаимно конфликтующими стратегиями, более внимательно оценивая ситуацию.

В процессе усвоения понятия сохранения детей и активно входят в практику образовательного процесса благодаря развитию метода обучения ТРИЗ - Теории Ре­шения Изобретательских Задач. Творческие задачи (вопросы, си­туации) имеют много решений (которые будут правильными), но не имеют четкого алгоритма (последовательности) решения. Эти средства прежде всего направлены на развитие смекалки, сообра­зительности, воображения, творческого (дивергентного) мышле­ния как важного компонента творческих способностей. Они спо­собствуют переносу имеющихся представлений в иные условия де­ятельности, а это требует осознания, присвоения самого знания. В процессе решения творческих задач ребенок учится устанавли­вать разнообразные связи, выявлять причину по следствию, пре­одолевать стереотипы (которые уже начинают складываться), ком­бинировать, преобразовывать имеющиеся элементы (предметы, знания, вещества, свойства). Но самое главное - в процессе реше­ния таких задач ребенок начинает испытывать удовольствие от ум­ственной работы, от процесса мышления, от творчества, от осозна­ния собственных возможностей.

2. Методика использования творческих задач, вопросов и ситуаций в обучении дошкольников

Ю. Г. Тамберг отмечает, что существуют определенные труд­ности в выборе задач для детей. Если задача простая - ребенку скучно, если сложная - он отказывается ее решать. Существует несколько уровней трудности задач. Первый - ребенок может ре­шить задачу самостоятельно. Второй - самостоятельно решить не может, но с помощью наводящих вопросов решает сам. Тре­тий - не может решить, но может понять ход решения и ответ. Четвертый - не может ни решить, ни понять ход решения, ни понять ответ. Следует давать задачи первых трех уровней слож­ности, причем третий уровень задач надо решать в режиме «Давай решим вместе». Это воспитывает в ребенке уверенность в своих силах, смелость в постановке целей, доставляет удовольствие от общения со взрослым.

Дошкольникам целесообразно предъявлять творческие зада­чи, ставить творческие вопросы после того, как необходимые для решения представления уже имеются у ребенка. Например, твор­ческая задача «Нарисуй кошку, не рисуя ее» предполагает одним из вариантов решения рисование какой-либо части, по которой можно догадаться о целом (знание о зависимости части и целого). Задача «Нарисуй медведя в квадрате со стороной в 2 клетки, но так чтобы он был самым большим!» требует осознания относитель­ности величины.

Творческая задача «Как нарисовать солнце, если наш каран­даш умеет рисовать только квадраты?» может быть решена через осознание структуры геометрических фигур: чем больше углов, тем больше фигура похожа на круг. Это задача третьего уровня для шестилеток. Можно предложить решать ее практическим способом: множество квадратов накладывать друг на друга, мо­делируя солнце, или же выстраивать из них замкнутую в круг линию.

Творческий вопрос «Что надо сделать, чтобы сапоги не сколь­зили в гололед?» заставляет детей задуматься о причине скольже­ния, а также о том, какие свойства (сапога, льда) и как нужно из­менить, чтобы найти правильный ответ. Совместное обсуждение этого вопроса позволит найти несколько приемлемых решений и подарит детям радость содержательного общения.

Результатом включения в образовательный процесс творче­ских задач, ситуаций, вопросов будет развитие у детей (и взрослых) творческих способностей, уточнение и углубление представлений о разнообразных свойствах, связях, отношениях и зависимостях, развитие инициативности, самостоятельности, уверенности в своих возможностях, чувства юмора и удовольствия от умственно­го труда и общения.

Формы организации детской деятельности зависят от вида, назначения игр, мотивации, степени овладения познавательными действиями.

Преимущественно самостоятельно и инициативно, в виде самодеятельности дети осваивают настольно-печатные игры, игры-забавы, логические и математические головоломки, занима­ются экспериментированием. Естественно, что в каждом конкрет­ном случае возможно сочетание самодеятельности и совместного со взрослым конструирования системы игровых действий, обсуж­дения их результативности, проектирования хода игры и т.д. Взрослый мотивирует деятельность детей, создает положительное настроение, стремление находить способы решения, отгадывать и догадываться, включаться в коллективное решение игровых задач.

В деятельности, организуемой взрослым, дети осваивают спо­собы разрешения проблемных ситуаций, решения творческих задач, поиска и построения ответа на вопрос. Для этого взрослый организует тематические мини-ситуации, занятия в виде сюжет­ных логико-математических игр, тренинги, развлечения и вечера досуга (в том числе совместные с родителями).

3. Алгоритмы и их освоение дошкольниками.

Воспитание детей с самого рождения, в частности воспитание дошкольников, включает усвоение ими разного рода правил и их строгое выполнение (правила утреннего туалета, одевания и раз­девания, принятия пищи, перехода улицы). Режим дня до­школьника представляет собой систему предписаний о выполне­нии детьми и воспитателем действий в определенной последова­тельности. Обучая детей счету, измерению длин, сложению и вычитанию чисел, уборке комнаты, посадке растений и т. д., мы сообщаем им необходимые правила о том, что и в какой последо­вательности нужно делать для выполнения задания. Организовы­вая разнообразные дидактические и подвижные игры, мы знако­мим дошкольников с их правилами.

О всех видах деятельности, осуществляемых по определенным предписаниям, говорят, что они выполняются по определенным алгоритмам. С малых лет человек усваивает и исполняет в каждо­дневной жизни большое число алгоритмов, часто даже не зная, что это такое.

Что такое алгоритм? Нередко встречаются виды однотипных задач, например: сложение двух многозначных чисел; переход улицы, регулируемый или нерегулируемый светофором; измерение длины отрезка и т. д. Естественно возникает вопрос: существует ли достаточно общий способ, который можно было бы использовать для решения любой задачи данного вида однотипных задач? Если такой общий способ существует, то его называют алго­ритмом^ данного вида задач. Для каждого из приведенных выше видов задач имеется соответствующий алгоритм.

Слово алгоритм происходит от имени известного математика IX в. аль-Хорезми, что означает «из Хорезма», впервые сформулировавшего правила выполнения арифметических действий над многозначными числами. Через труды аль-Хорезми в Европу проникли спосо­бы действий с числами в десятичной системе счисления, которые стали называть алгоритма­ми согласно латинской транскрипции имени ученого. В течение столетий значение слова «алгоритм» постепенно обобщалось, и сегодня под алгоритмом понимают некоторый общий метод или способ, предписание, инструкцию, свод правил для решения за конечное число шагов любой задачи из определенного вида однотипных задач, для которого предназначен этот метод.

Для задачи сложения двух многозначных чисел известен спо­соб сложения «в столбик», пригодный для сложения любых двух многозначных чисел, т. е. для решения любой частной задачи из этого вида однотипных задач.

Для задачи перехода улицы, например нерегулируемого свето­фором, можно сформулировать общий способ в виде следующего предписания, состоящего из 10 указаний, или команд:

1. Подойди к краю тротуара у знака перехода.

3. Смотри налево.

4. Если идет транспорт слева, то перейди к указанию 2, иначе - к указанию 5.

5. Пройди до середины улицы.

7. Смотри направо.

8. Если идет транспорт справа, то перейди к указанию 6, иначе - к указанию 9.

9. Пройди вторую половину улицы до противоположного тро­туара.

10. Переход улицы закончен.

Интуитивно под алгоритмом понимают общепонятное и точ­ное предписание о том, какие действия и в каком порядке необ­ходимо выполнить для решения любой задачи из данного вида однотипных задач.

Это определение, разумеется, не является математическим оп­ределением в строгом смысле, так как в нем встречается много терминов, смысл которых хотя и интуитивно может быть ясен, но точно не определен («предписание», «общепонятное», «точное», «действие»). Однако оно представляет собой разъяснение того, что обычно вкладывается в интуитивное понятие алгоритма, а для наших целей этого вполне достаточно.

Какие же свойства характеризуют всякий алгоритм?

Анализ различных алгоритмов позволяет выделить следующие общие свойства, присущие алгоритмам:

а) массовость, т. е. алгоритм предназначен для решения не од­ной какой-нибудь задачи, а для решения любой задачи из данного вида однотипных задач;

б) определенность (или детерминированность), т. е. алгоритм представляет собой строго определенную последовательность шагов, или действий, он однозначно определяет первый шаг и каждый следующий шаг, не оставляя решающему задачу никакой свободы выбора следующего шага по своему усмотрению;

в) результативность: решая любую задачу из данного вида задач по соответствующему алгоритму, мы за конечное число шагов получаем результат. Разумеется, для различных частных задач одного вида число шагов может оказаться различным, но оно всегда конечно.

Алгоритм - одно из фундаментальных научных понятий, ис­пользуемое и математикой, и информатикой - наукой, изучающей способы представления, хранения и преобразования информации с помощью различных автоматических устройств. Наличие алго­ритма для осуществления некоторой деятельности является необ­ходимым условием передачи этого вида деятельности различным автоматическим устройствам, роботам, компьютерам (от отпуска стакана газированной воды, продажи авиабилета с хранением и преобразованием информации о наличии свободных мест до уп­равления сложными технологическими процессами, не говоря уже о выполнении огромных объемов вычислительной работы, связан­ной с решением сложных научно-технических задач).

Имеются различные формы записи или представления алго­ритмов, предназначенные для различных исполнителей: словес­ные предписания, в том числе включающие различные формулы; наглядные блок-схемы, ориентированные на исполнителя-чело­века; программы, представляющие собой запись алгоритма на языке, понятном ЭВМ, т. е. языке программирования.

Здесь уместно уточнить, что означает выдвинутое требование «общепонятности» предписания, которым задается алгоритм. Это означает, что предписание должно быть сформулировано так, чтобы оно было одинаково понятно всем исполнителям той кате­гории, на которую оно ориентировано. Это имеет чрезвычайно важное значение, в частности, при обучении маленьких детей. На­пример, приведенные выше предписания, задающие алгоритмы перехода улицы и измерения длины, не предназначены для обуче­ния дошкольников. Для этой цели нужно сформулировать их на понятном детям языке, что и делает любой воспитатель, если, раз­умеется, он имеет соответствующую подготовку и понимает свои задачи.

Однако приведенные выше предписания составлены так, что они выявляют шаговую (дискретную) оперативно-логическую структуру алгоритмов. Поясним, что это означает.

1. Каждый алгоритм может быть представлен в виде последовательности шагов. Разумеется, понятие шаг является относительным. Один и тот же алгоритм можно по-разному представить в виде последовательности шагов, и не всегда отдельные шаги соответствуют элементарным действиям. Само понятие элементарное действие относительно: одно и то же действие может быть для одного ребенка, и не только ребенка, элементарным, для другого - неэлементарным (в результате чего и возникает необходимость в расчленении этого действия на другие, элементарные, действия).

Дискретность структуры алгоритма состоит в том, что для каждого шага можно указать однозначно непосредственно сле­дующий за ним шаг.

2. В приведенных выше предписаниях можно различить два основных вида команд, а следовательно, два основных вида шагов, представленных этими предписаниями алгоритмов: простые команды, предписывающие выполнение некоторых действий («смотри влево», «пройди до середины улицы», «выбери мерку», «наложи мерку» и т. д.), и составные, определяющие разветвление процесса решения задачи в зависимости от выполнения или невыполнения некоторого условия («если идет транспорт слева, то перейди к указанию 2, иначе - к указанию 5»), называемые условными.

Условная команда имеет вид «если Р, то А, иначе В». Она пред­писывает следующий порядок действий: если условие Р выполня­ется (истинно), то выполняется А (в нашем примере - возврат к указанию 2). Если же условие Р не выполняется (ложно), что обо­значается словом «иначе», то А пропускается и выполняется В (в на­шем примере осуществляется переход к следующему указанию 5).

Условные команды можно записать сокращенно: «если Р, то А», при этом подразумевается, что если условие Р не выполняется, то осуществляется переход к следующей по порядку команде В приведенных выше примерах условные команды, если усло­вие Р выполняется, определяют повторение некоторых действий («стой», «смотри влево», «смотри вправо», «наложи мерку» и т. д.) определенное число раз (пока условие Р выполняется). Такие про­цессы и соответствующие им алгоритмы, в которых некоторые действия повторяются, называются циклическими.

Если же алгоритм состоит из одних простых команд, то он на­зывается линейным.

Таким образом, различают линейные, разветвленные и цикли­ческие алгоритмы.

Алгоритм можно наглядно представить в виде блок-схемы, со­стоящей из блоков и стрелок. Каждый шаг представляется с по­мощью блока. Блок, предусматривающий выполнение некоторого действия, изображается в виде прямоугольника, внутри которого записано соответствующее действие. Блок, представляющий ло­гическое условие, изображается в виде ромба, внутри которого за­писано проверяемое условие. Если за шагом А непосредственно следует шаг В, то от блока А к блоку В проводится стрелка. От каждого прямоугольника исходит только одна стрелка, от каждого ромба - одна или две стрелки (одна с пометкой «да», идущая к блоку, следующему за логическим условием, если оно истинно, другая - с пометкой «нет», идущая к блоку, следующему за логи­ческим условием, если оно ложно). Начало и конец изображаются овальными фигурами.

Алгоритмы, представленные выше с помощью словесных предписаний, могут быть представлены и с помощью блок-схемы, иными словами, эти предписания переводятся в блок-схемы.

На иллюстрация изображена блок-схема алгоритма перехода улицы, нерегулируемого светофором.

Для изображения алгоритмов некоторых детских игр (правил игры) могут быть использованы специальные условные обозначе­ния, которые легко разъясняются детям.

Приведем в качестве примера игру «Преобразование слов», моделирующую понятие алгоритм преобразования слов в данном ал­фавите. В этой игре, а по существу серии игр, буквы и слова необыч­ные. Используется двухбуквенный алфавит, состоящий из двух различных геометрических фигур, например квадратика и кру­жочка, или из цифр 0 и 1. Словами мы называем конечные цепоч­ки из квадратиков и кружочков (во втором варианте конечные последовательности из нулей и единиц). Любое сколь угодно длинное слово в нашем алфавите преобразовывается по приведен­ным на иллюстрации правилам следующим образом: если в заданном слове имеется квадратик, расположенный левее кружочка, то, со­гласно правилу 1, их нужно поменять местами; если во вновь по­лученном слове опять имеется квадратик, расположенный левее кружочка, нужно опять их поменять местами и т.д.; правило 1 применяется столько раз, сколько возможно, т. е. пока не полу­чится слово, в котором уже нет квадратика, расположенного левее кружочка, или в котором все кружочки лежат левее всех квадрати­ков; затем переходим к применению правила 2, а именно: если имеются два рядом стоящих кружочка, их удаляют, и правило 2 применяется столько раз, сколько возможно, т. е. пока не полу­чится слово, в котором нет двух рядом стоящих кружочков; затем переходим к применению правила 3, а именно: если имеются два рядом стоящих квадратика, их удаляют, и это правило применя­ется столько раз, сколько возможно, т. е. пока не получится слово, в котором нет двух рядом стоящих квадратиков. Полученное слово является результатом преобразования исходного слова по заданным правилам и способу их применения, определяющим вместе неко­торый алгоритм преобразования слов в данном алфавите.

На рисунки показано преобразование четырех слов по этому алгоритму.

Как показывает опыт обучения, повторив эту игру несколько раз для различных «слов», дети 5-6 лет в состоянии заранее пра­вильно определить, какие вообще могут оказаться результаты со­кращения «слов» по заданным правилам: кружочек и квадратик, или один кружочек, или один квадратик, или «ничего» (это «ни­чего» называют «пустым словом»).

Приведенные выше правила игры вместе с процедурой их применения могут быть изображены блок-схемой.

Умение применять разного рода алгоритмы, тем более умение предвидеть и обосновывать возможные результаты их примене­ния - признак формирования свойственного для математика стиля мышления. Моделирование различных алгоритмов в виде детских игр открывает широкие возможности для формирования зачатков этого стиля мышления уже у дошкольников.

4. Моделирование как средство логико-математического развития детей дошкольного возраста

Согласно исследованиям, основы освоения моделирования закладываются в дошкольном возрасте, что вызывает пристальное внимание психологов и педагогов к генезису развития моделиро­вания в дошкольном возрасте, разработке содержания моделей и технологий их использования в процессе освоения детьми различ­ного содержания.

Особую роль играет моделирование в логико-математическом развитии детей. Математические понятия являются моделями разной степени условности (натуральный ряд чисел, планы, цифры и др.). Сложность их освоения обусловлена противоре­чием между образным мышлением дошкольника и абстрактно­стью самих понятий. В силу этого для детей дошкольного возраста необходима разработка и использование более наглядных моделей («модели нижнего яруса» по классификации В. А. Штоффа). Про­межуточные модели, с одной стороны, способствуют развитию необходимых умений моделировать, с другой - представляют со­держание в более упрощенной, доступной детскому восприятию и пониманию форме.

В современных исследованиях имеют место разные подходы к определению сущности моделирования.

Моделирование рассматривается как общелогический метод познания;

Как вид знаково-символической деятельности;

Как общая интеллектуальная способность.

Одна из наиболее распространенных классификаций моделей подразумевает деление на два основных класса: материальные модели, назначение которых состоит в физическом воспроизве­дении действительности, и идеальные модели, с которыми, даже при воплощении их в материале, все преобразования осущест­вляются мысленно (образные, знаковые). В психологических ра­ботах модель определяют как особый вид знака и моделирование трактуют как один из видов знаково-символической деятельно­сти (ЗСД).

ЗСД представляется как особая деятельность со знаково-сим волическими средствами (ЗСС). Среди них выделяются схематизи­рованные, в которых передана структура действительности (план комнаты и т. п.); знаковые, обозначающие содержание (формулы; знаки, обозначающие сложение, вычитание, умножение, деление; цифры и т. п.). Выделяют также две формы ЗСС: вещественную (специальный дидактический материал, например блоки Дьенеша, палочки Кюизенера) и графическую (схемы, таблицы).

Ребенку необходимо освоить соотнесение «обозначаемое - обозначающее», которое является сущностью семиотической функции. Семиотическая функция понимается как целостное образование, включающее различение «обозначаемого» (и в нем: предмет и знак) и «обозначающего» (форму и содержание); оп­ределение связи между ними.

Изучение психологических предпосылок овладения модели­рованием и его генезиса в дошкольном детстве привело к опре­делению моделирования как общей интеллектуальной способно­сти (Л.А. Венгер, Р. И. Говорова, О. М.Дьяченко, С.Л. Лоренсо, А. М. Сиверио и др.). В основе данной интеллектуальной спо­собности лежит овладение детьми практическими действиями замещения, использования моделей, моделирования. Наглядное моделирование выступает средством ориентировки детей в дей­ствительности, обобщения, планирования и контроля действий и составляет одну из форм опосредования, которыми овладевают дошкольники. Л. А. Венгер отмечал, что наглядно-образное мышление дошкольников опосредуется наглядным моделирова­нием, в котором в условно-семантической форме отражаются различного вида отношения. Источником развития моделирова­ния является детская деятельность, которой свойственна моде­лирующая направленность.

Основываясь на идеях интериоризации внешних дейст­вий, в психологии экспериментально изучен генезис модели­рования. Развиваясь на основе овладения действиями заме­щения (3-4 года), моделирование превращается в средство познания (4-6 лет) и далее, «присваиваясь» детьми, становит­ся способом познания, собственно моделированием (6 лет и старше).

Особенности освоения замещения, моделирования в раннем и дошкольном возрасте. В процессе анализа особенностей опосредованного позна­ния детьми свойств и отношений можно условно наметить две линии: развитие собственно моделирования и освоение содержания посредством использования модели (см. табли­цу).

©2015-2019 сайт
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2017-07-03



Рассказать друзьям